Learning of FCMs with causal links represented via fuzzy triangular numbers
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper, learning of the FCMs represented using triangular fuzzy numbers (TFNs) in their weight matrices is studied. For this aim a population based novel learning approach is proposed. In the proposed algorithm, BB-BC optimization method is preferred because of its fast convergence capability. Moreover, this proposed approach involves concept by concept (CbC) learning to increase the accuracy of the learning of FCMs. Two different tests are realized as case studies for investigating the performance of the learning approach. For the first test, the learning capability of the algorithm is examined and for the second test the performance of generalization capability is investigated. The tests, which are presented via tables and figures, show that learning approach is successful for learning of FCMs with TFNs. Furthermore, from the case study it can be seen that the uncertain information can be represented and interpreted by the proposed FCM design methodology in a more efficient way.
Details
Originalsprache | Englisch |
---|---|
Titel | FUZZ-IEEE 2015 - IEEE International Conference on Fuzzy Systems |
Redakteure/-innen | Adnan Yazici, Nikhil R. Pal, Hisao Ishibuchi, Bulent Tutmez, Chin-Teng Lin, Joao M. C. Sousa, Uzay Kaymak, Trevor Martin |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
ISBN (elektronisch) | 9781467374286 |
Publikationsstatus | Veröffentlicht - 25 Nov. 2015 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | IEEE International Conference on Fuzzy Systems |
---|---|
Band | 2015-November |
ISSN | 1098-7584 |
Konferenz
Titel | IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015 |
---|---|
Dauer | 2 - 5 August 2015 |
Stadt | Istanbul |
Land | Türkei |
Externe IDs
ORCID | /0000-0001-5165-4459/work/172571753 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Causal Links, Fuzzy Cognitive Maps, Learning, Reasoning, Triangular Fuzzy Numbers, Weight Matrix