Learning of FCMs with causal links represented via fuzzy triangular numbers

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • M. Furkan Dodurka - , Istanbul Technical University (Autor:in)
  • Atakan Sahin - , Yildiz Technical University (Autor:in)
  • Engin Yesil - , Istanbul Technical University (Autor:in)
  • Leon Urbas - , Professur für Prozessleittechnik (Autor:in)

Abstract

In this paper, learning of the FCMs represented using triangular fuzzy numbers (TFNs) in their weight matrices is studied. For this aim a population based novel learning approach is proposed. In the proposed algorithm, BB-BC optimization method is preferred because of its fast convergence capability. Moreover, this proposed approach involves concept by concept (CbC) learning to increase the accuracy of the learning of FCMs. Two different tests are realized as case studies for investigating the performance of the learning approach. For the first test, the learning capability of the algorithm is examined and for the second test the performance of generalization capability is investigated. The tests, which are presented via tables and figures, show that learning approach is successful for learning of FCMs with TFNs. Furthermore, from the case study it can be seen that the uncertain information can be represented and interpreted by the proposed FCM design methodology in a more efficient way.

Details

OriginalspracheEnglisch
TitelFUZZ-IEEE 2015 - IEEE International Conference on Fuzzy Systems
Redakteure/-innenAdnan Yazici, Nikhil R. Pal, Hisao Ishibuchi, Bulent Tutmez, Chin-Teng Lin, Joao M. C. Sousa, Uzay Kaymak, Trevor Martin
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781467374286
PublikationsstatusVeröffentlicht - 25 Nov. 2015
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Conference on Fuzzy Systems
Band2015-November
ISSN1098-7584

Konferenz

TitelIEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015
Dauer2 - 5 August 2015
StadtIstanbul
LandTürkei

Externe IDs

ORCID /0000-0001-5165-4459/work/172571753

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Causal Links, Fuzzy Cognitive Maps, Learning, Reasoning, Triangular Fuzzy Numbers, Weight Matrix