Learning Mealy Machines with Local Timers

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Active automata learning (AAL) algorithms infer accurate automata models of black box applications, letting developers verify the behavior of increasingly complex real-time systems (RTS). However, learning models of larger RTS often takes very long or is not feasible at all. We introduce Mealy machines with local timers, a new class of Mealy machines that permit multiple location-bound timers and that can be learned efficiently. We design an efficient learning algorithm for them and validate our method across diverse case studies ranging from automotive systems to smart home appliances, where we drastically reduce runtimes compared to the state-of-the-art approach, thus, making AAL available for a wide range of RTS.

Details

OriginalspracheEnglisch
TitelFormal Methods and Software Engineering
Redakteure/-innenYi Li, Sofiène Tahar
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten47-64
Seitenumfang18
ISBN (elektronisch)978-981-99-7584-6
ISBN (Print)978-981-99-7583-9
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14308 LNCS
ISSN0302-9743

Konferenz

Titel24th International Conference on Formal Engineering Methods, ICFEM 2023
Dauer21 - 24 November 2023
StadtBrisbane
LandAustralien

Schlagworte

Schlagwörter

  • active automata learning, real-time systems, timer-based Mealy machines