Learning Koopman Bilinear Models with Multiplication-closed Observations for Linear Optimal Controller Design

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

The Koopman operator approximation is emerging as a leading approach for identifying and controlling non-linear systems by transforming them into a bilinear form. However, designing reactive controllers for the Koopman bilinear system remains challenging. This paper proposes a purely data-driven method to learn the Koopman bilinear representation of control-affine systems using measurement data only and design a linear optimal controller for the learned system. Specifically, Deep Neural Networks (DNNs) are employed to learn a finite set of observables that approximately span a Koopman-invariant subspace and form a multiplication-closed set. This multiplication-closed property facilitates optimal controller design by enabling the conversion of the Koopman bilinear system into a closed-loop linear system. The linear control matrix is derived by iteratively solving the Koopman Riccati equation while minimizing an upper bound of the optimal cost. The proposed approach is validated on the Van der Pol oscillator, which outperforms the method that approximates the Koopman control system using a fixed function library in prediction accuracy and control performance.

Details

OriginalspracheEnglisch
Titel2025 American Control Conference, ACC 2025
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten1801-1807
Seitenumfang7
ISBN (elektronisch)979-8-3315-6937-2
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - Aug. 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings of the American Control Conference
ISSN0743-1619

Konferenz

Titel2025 American Control Conference
KurztitelACC 2025
Dauer8 - 10 Juli 2025
Webseite
OrtSheraton Denver Downtown Hotel
StadtDenver
LandUSA/Vereinigte Staaten

Schlagworte

ASJC Scopus Sachgebiete