Learning algorithm for cellular neural networks (CNN) solving nonlinear partial differential equations
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Abstract
A learning procedure for CNN is presented and applied in order to find the parameters of networks approximating the dynamics of certain nonlinear systems which are characterized by partial differential equations (PDE). Our results show that - depending on the training pattern - solutions of various PDE can be approximated with high accuracy by a simple CNN structure. Results for two nonlinear PDE, Burgers' equation and the Korteweg-de Vries equation, are discussed in detail.
Details
Originalsprache | Englisch |
---|---|
Seiten | 501-504 |
Seitenumfang | 4 |
Publikationsstatus | Veröffentlicht - 1995 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Konferenz
Titel | Proceedings of the 1995 3rd URSI International Symposium on Signals, Systems and Electronics, ISSSE'95 |
---|---|
Dauer | 25 - 27 Oktober 1995 |
Stadt | San Francisco, CA, USA |
Externe IDs
ORCID | /0000-0001-7436-0103/work/142240248 |
---|