Learning algorithm for cellular neural networks (CNN) solving nonlinear partial differential equations

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

  • F. Puffer - , Universitätsklinikum Frankfurt (Autor:in)
  • R. Tetzlaff - , Universitätsklinikum Frankfurt (Autor:in)
  • Dietrich Wolf - , Universitätsklinikum Frankfurt (Autor:in)

Abstract

A learning procedure for CNN is presented and applied in order to find the parameters of networks approximating the dynamics of certain nonlinear systems which are characterized by partial differential equations (PDE). Our results show that - depending on the training pattern - solutions of various PDE can be approximated with high accuracy by a simple CNN structure. Results for two nonlinear PDE, Burgers' equation and the Korteweg-de Vries equation, are discussed in detail.

Details

OriginalspracheEnglisch
Seiten501-504
Seitenumfang4
PublikationsstatusVeröffentlicht - 1995
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelProceedings of the 1995 3rd URSI International Symposium on Signals, Systems and Electronics, ISSSE'95
Dauer25 - 27 Oktober 1995
StadtSan Francisco, CA, USA

Externe IDs

ORCID /0000-0001-7436-0103/work/142240248

Schlagworte

ASJC Scopus Sachgebiete