Laser particle acceleration for radiotherapy: A first radiobiological characterization of laser accelerated electrons

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • J. Pawelke - , Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • E. Beyreuther - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • W. Enghardt - , OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • M. Kaluza - , Friedrich-Schiller-Universität Jena (Autor:in)
  • L. Karsch - , Technische Universität Dresden (Autor:in)
  • L. Laschinsky - , Technische Universität Dresden (Autor:in)
  • E. Leßmann - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • D. Naumburger - , Technische Universität Dresden (Autor:in)
  • M. Nicolai - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Christian Richter - , OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • R. Sauerbrey - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • H. P. Schlenvoigt - , Friedrich-Schiller-Universität Jena (Autor:in)
  • M. Baumann - , OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Technische Universität Dresden (Autor:in)

Abstract

In recent years, the technology of laser-based particle acceleration has developed at such a rate that compact and potentially more cost-effective accelerators are promised for medical application, e.g. for high precision hadron radiotherapy. Necessary requirements are the supply of stable and reliable particle beams with reproducible properties, sufficient particle intensities and monoenergetic spectra. Additionally, a precise dose delivery in an appropriate time and the exposure of a desired irradiation field are needed. Beside these physical demands, the consequences on detection and dosimetry as well as the radiobiological effect on living cells have to be investigated for the ultra-short pulsed laser-based particle beams. As a first step, the laser accelerator facility at the Jena Titanium: Sapphire system was customized for in vitro cell irradiation experiments and the delivered electron beam was improved with regard to its spectrum, diameter, dose rate and dose homogeneity. Furthermore, a custom-designed beam and dose monitoring system was established that enables real-time monitoring of the irradiation experiments and a precise determination of the dose delivered to the cells. Moreover, stable and reproducible beam properties were achieved during the whole three month experiment campaign. Dose-effect-curves were obtained for four cell lines and two endpoints, generally displaying a lower biological effectiveness for short-pulsed laser-accelerated electrons relative to the continuous 200 kV X-ray reference irradiation. Possible reasons will be discussed.

Details

OriginalspracheEnglisch
TitelWorld Congress on Medical Physics and Biomedical Engineering
Herausgeber (Verlag)Springer-Verlag
Seiten502-504
Seitenumfang3
Auflage3
ISBN (Print)9783642039010
PublikationsstatusVeröffentlicht - 2009
Peer-Review-StatusJa

Publikationsreihe

ReiheIFMBE Proceedings
Nummer3
Band25
ISSN1680-0737

Konferenz

TitelWorld Congress 2009 on Medical Physics and Biomedical Engineering
UntertitelRadiation Protection and Dosimetry, Biological Effects of Radiation
Dauer7 - 12 September 2009
BekanntheitsgradInternationale Veranstaltung
StadtMünchen
LandDeutschland

Externe IDs

ORCID /0000-0003-4261-4214/work/147143137

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Biological effectiveness, In vitro cell experiments, Laser-based particle acceleration, Radiotherapy