Laser capture microdissection of human pancreatic islets reveals novel eQTLs associated with type 2 diabetes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Amna Khamis - , Imperial College London, Université de Lille (Autor:in)
  • Mickaël Canouil - , Université de Lille (Autor:in)
  • Afshan Siddiq - , Imperial College London (Autor:in)
  • Hutokshi Crouch - , Imperial College London (Autor:in)
  • Mario Falchi - , Imperial College London (Autor:in)
  • Manon von Bulow - , Sanofi-Aventis (Autor:in)
  • Florian Ehehalt - , Technische Universität Dresden, Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Lorella Marselli - , University of Pisa (Autor:in)
  • Marius Distler - , Hochschulmedizin (Medizinische Fakultät und Universitätsklinikum), OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Technische Universität Dresden, Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Daniela Richter - , Technische Universität Dresden, Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Jürgen Weitz - , Hochschulmedizin (Medizinische Fakultät und Universitätsklinikum), Nationales Centrum für Tumorerkrankungen Dresden, Technische Universität Dresden, Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Krister Bokvist - , Eli Lilly (Autor:in)
  • Ioannis Xenarios - , Swiss Institute of Bioinformatics (Autor:in)
  • Bernard Thorens - , Université de Lausanne (Autor:in)
  • Anke M. Schulte - , Sanofi-Aventis (Autor:in)
  • Mark Ibberson - , Swiss Institute of Bioinformatics (Autor:in)
  • Amelie Bonnefond - , Université de Lille (Autor:in)
  • Piero Marchetti - , University of Pisa (Autor:in)
  • Michele Solimena - , Molekulare Diabetologie, Technische Universität Dresden, Deutsches Zentrum für Diabetesforschung (DZD e.V.) (Autor:in)
  • Philippe Froguel - , Imperial College London, Université de Lille (Autor:in)

Abstract

Objective: Genome wide association studies (GWAS)for type 2 diabetes (T2D)have identified genetic loci that often localise in non-coding regions of the genome, suggesting gene regulation effects. We combined genetic and transcriptomic analysis from human islets obtained from brain-dead organ donors or surgical patients to detect expression quantitative trait loci (eQTLs)and shed light into the regulatory mechanisms of these genes. Methods: Pancreatic islets were isolated either by laser capture microdissection (LCM)from surgical specimens of 103 metabolically phenotyped pancreatectomized patients (PPP)or by collagenase digestion of pancreas from 100 brain-dead organ donors (OD). Genotyping (> 8.7 million single nucleotide polymorphisms)and expression (> 47,000 transcripts and splice variants)analyses were combined to generate cis-eQTLs. Results: After applying genome-wide false discovery rate significance thresholds, we identified 1,173 and 1,021 eQTLs in samples of OD and PPP, respectively. Among the strongest eQTLs shared between OD and PPP were CHURC1 (OD p-value=1.71 × 10-24; PPP p-value = 3.64 × 10–24)and PSPH (OD p-value = 3.92 × 10−26; PPP p-value = 3.64 × 10−24). We identified eQTLs in linkage-disequilibrium with GWAS loci T2D and associated traits, including TTLL6, MLX and KIF9 loci, which do not implicate the nearest gene. We found in the PPP datasets 11 eQTL genes, which were differentially expressed in T2D and two genes (CYP4V2 and TSEN2)associated with HbA1c but none in the OD samples. Conclusions: eQTL analysis of LCM islets from PPP led us to identify novel genes which had not been previously linked to islet biology and T2D. The understanding gained from eQTL approaches, especially using surgical samples of living patients, provides a more accurate 3-dimensional representation than those from genetic studies alone.

Details

OriginalspracheEnglisch
Seiten (von - bis)98-107
Seitenumfang10
FachzeitschriftMolecular metabolism
Jahrgang24
Frühes Online-Datum18 März 2019
PublikationsstatusVeröffentlicht - Juni 2019
Peer-Review-StatusJa

Externe IDs

PubMed 30956117

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • eQTLs, Genetics, Islets, Laser capture microdissection, Type 2 diabetes

Bibliotheksschlagworte