Lack of evidence for predictive utility from resting state fMRI data for individual exposure-based cognitive behavioral therapy outcomes: A machine learning study in two large multi-site samples in anxiety disorders

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Kevin Hilbert - , Humboldt-Universität zu Berlin, HMU Health and Medical University (Gemeinsame:r Erstautor:in)
  • Joscha Böhnlein - , Westfälische Wilhelms-Universität Münster (Gemeinsame:r Erstautor:in)
  • Charlotte Meinke - , Humboldt-Universität zu Berlin (Autor:in)
  • Alice V. Chavanne - , Humboldt-Universität zu Berlin, École normale supérieure Paris-Saclay (Autor:in)
  • Till Langhammer - , Humboldt-Universität zu Berlin (Autor:in)
  • Lara Stumpe - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Nils Winter - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Ramona Leenings - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Dirk Adolph - , Ruhr-Universität Bochum (Autor:in)
  • Volker Arolt - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Sophie Bischoff - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Jan C. Cwik - , Universität zu Köln (Autor:in)
  • Jürgen Deckert - , Universitätsklinikum Würzburg (Autor:in)
  • Katharina Domschke - , Universitätsklinikum Freiburg (Autor:in)
  • Thomas Fydrich - , Humboldt-Universität zu Berlin (Autor:in)
  • Bettina Gathmann - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Alfons O. Hamm - , Ernst-Moritz-Arndt-Universität Greifswald (Autor:in)
  • Ingmar Heinig - , Professur für Klinische Psychologie und Behaviorale Neurowissenschaft (Autor:in)
  • Martin J. Herrmann - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Maike Hollandt - , Ernst-Moritz-Arndt-Universität Greifswald (Autor:in)
  • Jürgen Hoyer - , Professur für Behaviorale Psychotherapie (Autor:in)
  • Markus Junghöfer - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Tilo Kircher - , Philipps-Universität Marburg (Autor:in)
  • Katja Koelkebeck - , Universität Duisburg-Essen (Autor:in)
  • Martin Lotze - , Ernst-Moritz-Arndt-Universität Greifswald (Autor:in)
  • Jürgen Margraf - , Ruhr-Universität Bochum (Autor:in)
  • Jennifer L.M. Mumm - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Peter Neudeck - , Protect-AD Study Site Cologne, Technische Universität Chemnitz (Autor:in)
  • Paul Pauli - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Andre Pittig - , Georg-August-Universität Göttingen (Autor:in)
  • Jens Plag - , Charité – Universitätsmedizin Berlin, Alexianer St. Hedwig-Krankenhaus (Autor:in)
  • Jan Richter - , Ernst-Moritz-Arndt-Universität Greifswald, Stiftung Universität Hildesheim (Autor:in)
  • Isabelle C. Ridderbusch - , Philipps-Universität Marburg (Autor:in)
  • Winfried Rief - , Philipps-Universität Marburg (Autor:in)
  • Silvia Schneider - , Ruhr-Universität Bochum (Autor:in)
  • Hanna Schwarzmeier - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Fabian R. Seeger - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Niklas Siminski - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Benjamin Straube - , Philipps-Universität Marburg (Autor:in)
  • Thomas Straube - , Universität Osnabrück (Autor:in)
  • Andreas Ströhle - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Hans-Ulrich Wittchen - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Adrian Wroblewski - , Philipps-Universität Marburg (Autor:in)
  • Yunbo Yang - , Philipps-Universität Marburg (Autor:in)
  • Kati Roesmann - , Westfälische Wilhelms-Universität Münster, Universität Osnabrück (Autor:in)
  • Elisabeth J. Leehr - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Udo Dannlowski - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Ulrike Lueken - , Humboldt-Universität zu Berlin, Deutsches Zentrum für Psychische Gesundheit (DZPG) (Autor:in)

Abstract

Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.

Details

OriginalspracheEnglisch
Aufsatznummer120639
Seitenumfang10
FachzeitschriftNeuroImage
Jahrgang295
PublikationsstatusVeröffentlicht - 15 Juli 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38796977
ORCID /0000-0002-1697-6732/work/173516019
ORCID /0000-0002-7762-4327/work/173516630

Schlagworte

Schlagwörter

  • Anxiety disorders, Cognitive behavioral therapy, Machine learning, Outcome prediction, Precision psychotherapy, Resting state