Laboratory x-ray microscopy study of microcrack evolution in a novel sodium iron titanate-based cathode material for li-ion batteries

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Viktor Shapovalov - , Southern Federal University (Autor:in)
  • Kristina Kutukova - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Sebastian Maletti - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Christian Heubner - , Professur für Anorganisch-Nichtmetallische Werkstoffe (gB/FG) (Autor:in)
  • Vera Butova - , Southern Federal University (Autor:in)
  • Igor Shukaev - , Southern Federal University (Autor:in)
  • Alexander Guda - , Southern Federal University (Autor:in)
  • Alexander Soldatov - , Southern Federal University (Autor:in)
  • Ehrenfried Zschech - , deepXscan GmbH (Autor:in)

Abstract

The long-term performance of batteries depends strongly on the 3D morphology of electrode materials. Morphological changes, i.e., particle fracture and surface deterioration, are among the most prominent sources of electrode degradation. A profound understanding of the fracture mechanics of electrode materials in micro-and nanoscale dimensions requires the use of advanced in situ and operando techniques. In this paper, we demonstrate the capabilities of laboratory X-ray microscopy and nano X-ray computed tomography (nano-XCT) for the non-destructive study of the electrode material’s 3D morphology and defects, such as microcracks, at sub-micron resolution. We investigate the morphology of Na0.9Fe0.45Ti1.55O4 sodium iron titanate (NFTO) cathode material in Li-ion batteries using laboratory-based in situ and operando X-ray microscopy. The impact of the morphology on the degradation of battery materials, particularly the size-and density-dependence of the fracture behavior of the particles, is revealed based on a semi-quantitative analysis of the formation and propagation of microcracks in particles. Finally, we discuss design concepts of the operando cells for the study of electrochemical processes.

Details

OriginalspracheEnglisch
Aufsatznummer3
FachzeitschriftCrystals
Jahrgang12
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2022
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • 3D imaging, Battery, Cathode material, Crack formation, Crack propagation, Degradation process, Operando study, X-ray computed tomography, X-ray microscopy