Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-Based Causal Discovery

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Causal discovery aims to estimate causal structures among variables based on observational data. Large Language Models (LLMs) offer a fresh perspective to tackle the causal discovery problem by reasoning on the metadata associated with variables rather than their actual data values, an approach referred to as knowledge-based causal discovery. In this paper, we investigate the capabilities of Small Language Models (SLMs, defined as LLMs with fewer than 1 billion parameters) with prompt-based learning for knowledge-based causal discovery. Specifically, we present “KG Structure as Prompt”, a novel approach for integrating structural information from a knowledge graph, such as common neighbor nodes and metapaths, into prompt-based learning to enhance the capabilities of SLMs. Experimental results on three types of biomedical and open-domain datasets under few-shot settings demonstrate the effectiveness of our approach, surpassing most baselines and even conventional fine-tuning approaches trained on full datasets. Our findings further highlight the strong capabilities of SLMs: in combination with knowledge graphs and prompt-based learning, SLMs demonstrate the potential to surpass LLMs with larger number of parameters. Our code and datasets are available on GitHub.1(https://github.com/littleflow3r/kg-structure-as-prompt)

Details

OriginalspracheEnglisch
TitelThe Semantic Web
Redakteure/-innenGianluca Demartini, Katja Hose, Maribel Acosta, Matteo Palmonari, Gong Cheng, Hala Skaf-Molli, Nicolas Ferranti, Daniel Hernández, Aidan Hogan
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten87-106
Seitenumfang20
ISBN (elektronisch)978-3-031-77844-5
ISBN (Print)978-3-031-77843-8
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band15231 LNCS
ISSN0302-9743

Konferenz

Titel23rd International Semantic Web Conference
KurztitelISWC 2024
Veranstaltungsnummer23
Dauer11 - 15 November 2024
Webseite
OrtLive! Casino & Hotel Maryland
StadtBaltimore
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0001-5458-8645/work/193180541

Schlagworte

Forschungsprofillinien der TU Dresden

Schlagwörter

  • causal relation, knowledge graph, language model