Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Soosang Chae - , Leibniz-Institut für Polymerforschung Dresden, Korea University of Technology and Education (Autor:in)
  • Won J. Choi - , Lawrence Livermore National Laboratory (Autor:in)
  • Lisa Julia Nebel - , Professur für Numerik partieller Differentialgleichungen (Autor:in)
  • Chang Hee Cho - , Gachon University (Autor:in)
  • Quinn A. Besford - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • André Knapp - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Pavlo Makushko - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Yevhen Zabila - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Oleksandr Pylypovskyi - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Min Woo Jeong - , Kyung Hee University (Autor:in)
  • Stanislav Avdoshenko - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Oliver Sander - , Professur für Numerik partieller Differentialgleichungen (Autor:in)
  • Denys Makarov - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Yoon Jang Chung - , Korea University (Autor:in)
  • Andreas Fery - , Professur für Physikalische Chemie polymerer Materialien (gB/IPF) (PC5) (Autor:in)
  • Jin Young Oh - , Kyung Hee University (Autor:in)
  • Tae Il Lee - , Gachon University (Autor:in)

Abstract

Nanophase mixtures, leveraging the complementary strengths of each component, are vital for composites to overcome limitations posed by single elemental materials. Among these, metal-elastomer nanophases are particularly important, holding various practical applications for stretchable electronics. However, the methodology and understanding of nanophase mixing metals and elastomers are limited due to difficulties in blending caused by thermodynamic incompatibility. Here, we present a controlled method using kinetics to mix metal atoms with elastomeric chains on the nanoscale. We find that the chain migration flux and metal deposition rate are key factors, allowing the formation of reticular nanophases when kinetically in-phase. Moreover, we observe spontaneous structural evolution, resulting in gyrified structures akin to the human brain. The hybridized gyrified reticular nanophases exhibit strain-invariant metallic electrical conductivity up to 156% areal strain, unparalleled durability in organic solvents and aqueous environments with pH 2–13, and high mechanical robustness, a prerequisite for environmentally resilient devices.

Details

OriginalspracheEnglisch
Aufsatznummer3071
Seitenumfang12
FachzeitschriftNature Communications
Jahrgang15
Ausgabenummer1
PublikationsstatusVeröffentlicht - 9 Apr. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-7200-0312/work/157766758
ORCID /0000-0003-1093-6374/work/157769638
Scopus 85189965232

Schlagworte

Bibliotheksschlagworte