JUmPER: Performance Data Monitoring, Instrumentation and Visualization for Jupyter Notebooks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Computational performance, e.g. CPU or GPU utilization, is crucial for analyzing machine learning (ML) applications and their resource-efficient deployment. However, the ML community often lacks accessible tools for holistic performance engineering, especially during exploratory programming such as implemented by Jupyter. Therefore, we present JUmPER, a Jupyter kernel that supports coarse-grained performance monitoring and fine-grained analysis tasks of user code in Jupyter. JUmPER collects system metrics and stores them alongside executed user code. Built-in Jupyter magic commands provide visualizations of the monitored performance data directly in Jupyter. Additionally, code instrumentation can be enabled to collect performance events using Score-P. JUmPER preserves the exploratory programming experience by seamlessly integrating with Jupyter and reducing kernel runtime overhead through in-memory (pipe) communication and parallel marshalling of Python's interpreter state for the Score-P execution. JUmPER thus provides a low-hurdle infrastructure for performance engineering in Jupyter and supports resource-efficient ML applications.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Proceedings of SC 2024-W |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seiten | 2003-2011 |
| Seitenumfang | 9 |
| ISBN (elektronisch) | 979-8-3503-5554-3 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | SC-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis |
|---|
Workshop
| Titel | 4th Combined Workshop on Interactive and Urgent HPC |
|---|---|
| Veranstaltungsnummer | 4 |
| Beschreibung | Workshop of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2024) |
| Dauer | 22 November 2024 |
| Webseite | |
| Ort | Georgia World Congress Center |
| Stadt | Atlanta |
| Land | USA/Vereinigte Staaten |
Externe IDs
| ORCID | /0000-0003-3137-0648/work/192043340 |
|---|
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Jupyter, Machine Learning, Performance Engineering, Resource efficiency