Joint Graph Decomposition and Node Labeling: Problem, Algorithms, Applications

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Evgeny Levinkov - , Max-Planck-Institut für Informatik (Autor:in)
  • Jonas Uhrig - , Daimler AG, Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Siyu Tang - , Max-Planck-Institut für Informatik, Max-Planck-Institut für Intelligente Systeme (Autor:in)
  • Mohamed Omran - , Max-Planck-Institut für Informatik (Autor:in)
  • Eldar Insafutdinov - , Max-Planck-Institut für Informatik (Autor:in)
  • Alexander Kirillov - , Professur für Bildverarbeitung (Autor:in)
  • Carsten Rother - , Professur für Bildverarbeitung (Autor:in)
  • Thomas Brox - , Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Bernt Schiele - , Max-Planck-Institut für Informatik (Autor:in)
  • Bjoern Andres - , Max-Planck-Institut für Informatik (Autor:in)

Abstract

We state a combinatorial optimization problem whose feasible solutions define both a decomposition and a node labeling of a given graph. This problem offers a common mathematical abstraction of seemingly unrelated computer vision tasks, including instance-separating semantic segmentation, articulated human body pose estimation and multiple object tracking. Conceptually, it generalizes the unconstrained integer quadratic program and the minimum cost lifted multicut problem, both of which are NP-hard. In order to find feasible solutions efficiently, we define two local search algorithms that converge monotonously to a local optimum, offering a feasible solution at any time. To demonstrate the effectiveness of these algorithms in tackling computer vision tasks, we apply them to instances of the problem that we construct from published data, using published algorithms. We report state-of-the-art application-specific accuracy in the three above-mentioned applications.

Details

OriginalspracheEnglisch
Titel2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Seiten1904-1912
Seitenumfang9
ISBN (elektronisch)978-1-5386-0457-1
PublikationsstatusVeröffentlicht - 2017
Peer-Review-StatusJa

Publikationsreihe

ReiheConference on Computer Vision and Pattern Recognition (CVPR)
ISSN1063-6919

Externe IDs

dblp conf/cvpr/LevinkovUTOIKRB17
Scopus 85041908951
ORCID /0000-0001-5036-9162/work/161407124