Iterative annealing: A new efficient optimization method for cellular neural networks
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Abstract
Cellular Neural Networks (CNN) are excellently suited for image processing. A big challenge thereby is the determination of CNN templates for special image processing tasks. In many cases appropriate templates can only be found by a parameter optimization. Unfortunately, especially in the context of image processing, such an optimization is frequently a difficult task due to a lot of local minima in the error measure. In this contribution we present a new method of optimization that detects a global minimum of an error measure even if the function contains many local minima. To prove this allegation we constructed a number of multidimensional test functions, which have not only a global minimum but also many local minima. We present a comparison between the introduced Iterative Annealing method and other analytical and statistical optimization methods. Furthermore, by using the new optimization method we realized a feature point extractor with CNN.
Details
Originalsprache | Englisch |
---|---|
Seiten | 549-552 |
Seitenumfang | 4 |
Publikationsstatus | Veröffentlicht - 2001 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Konferenz
Titel | IEEE International Conference on Image Processing (ICIP) 2001 |
---|---|
Dauer | 7 - 10 Oktober 2001 |
Stadt | Thessaloniki |
Land | Griechenland |
Externe IDs
ORCID | /0000-0001-7436-0103/work/142240264 |
---|