Invariant measures of Lévy-type operators and their associated Markov processes
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
A distributional equation as a criterion for invariant measures of Markov processes associated to Lévy-type operators is established. This is obtained via a characterization of infinitesimally invariant measures of the associated generators. Particular focus is put on the one-dimensional case where the distributional equation becomes a Volterra-Fredholm integral equation, and on solutions to Lévy-driven stochastic differential equations. The results are accompanied by various illustrative examples.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 59 |
| Seiten (von - bis) | 1-29 |
| Fachzeitschrift | Electronic Journal of Probability |
| Jahrgang | 29 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Externe IDs
| ORCID | /0000-0002-9999-7589/work/158305123 |
|---|---|
| Scopus | 85191748293 |
| Mendeley | ae791a93-5860-3545-919c-12eb879d5e84 |
Schlagworte
Schlagwörter
- Lévy-type operators, Volterra-Fredholm integral equations, invariant distributions, Markov processes, stochastic differential equations, Feller processes