Invariant measures of Lévy-type operators and their associated Markov processes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

A distributional equation as a criterion for invariant measures of Markov processes associated to Lévy-type operators is established. This is obtained via a characterization of infinitesimally invariant measures of the associated generators. Particular focus is put on the one-dimensional case where the distributional equation becomes a Volterra-Fredholm integral equation, and on solutions to Lévy-driven stochastic differential equations. The results are accompanied by various illustrative examples.

Details

OriginalspracheEnglisch
Aufsatznummer59
Seiten (von - bis)1-29
FachzeitschriftElectronic Journal of Probability
Jahrgang29
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-9999-7589/work/158305123
Scopus 85191748293
Mendeley ae791a93-5860-3545-919c-12eb879d5e84

Schlagworte

Schlagwörter

  • Lévy-type operators, Volterra-Fredholm integral equations, invariant distributions, Markov processes, stochastic differential equations, Feller processes

Bibliotheksschlagworte