Intrinsic and Extrinsic Parameters for Controlling the Growth of Organic Single-Crystalline Nanopillars in Photovoltaics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Yue Zhang - , University of Massachusetts (Autor:in)
  • Ying Diao - , Stanford University (Autor:in)
  • Hyunbok Lee - , University of Massachusetts (Autor:in)
  • Timothy J. Mirabito - , University of Massachusetts (Autor:in)
  • Richard W. Johnson - , University of Massachusetts (Autor:in)
  • Egle Puodziukynaite - , University of Massachusetts (Autor:in)
  • Jacob John - , University of Massachusetts (Autor:in)
  • Kenneth R. Carter - , University of Massachusetts (Autor:in)
  • Todd Emrick - , University of Massachusetts (Autor:in)
  • Stefan C.B. Mannsfeld - , SLAC National Accelerator Laboratory (Autor:in)
  • Alejandro L. Briseno - , University of Massachusetts (Autor:in)

Abstract

The most efficient architecture for achieving high donor/acceptor interfacial area in organic photovoltaics (OPVs) would employ arrays of vertically interdigitated p- and n- type semiconductor nanopillars (NPs). Such morphology could have an advantage in bulk heterojunction systems; however, precise control of the dimension morphology in a crystalline, interpenetrating architecture has not yet been realized. Here we present a simple, yet facile, crystallization technique for the growth of vertically oriented NPs utilizing a modified thermal evaporation technique that hinges on a fast deposition rate, short substrate-source distance, and ballistic mass transport. A broad range of organic semiconductor materials is beneficial from the technique to generate NP geometries. Moreover, this technique can also be generalized to various substrates, namely, graphene, PEDOT-PSS, ZnO, CuI, MoO3, and MoS2. The advantage of the NP architecture over the conventional thin film counterpart is demonstrated with an increase of power conversion efficiency of 32% in photovoltaics. This technique will advance the knowledge of organic semiconductor crystallization and create opportunities for the fabrication and processing of NPs for applications that include solar cells, charge storage devices, sensors, and vertical transistors.

Details

OriginalspracheEnglisch
Seiten (von - bis)5547-5554
Seitenumfang8
FachzeitschriftNano letters
Jahrgang14
Ausgabenummer10
PublikationsstatusVeröffentlicht - 16 Sept. 2014
Peer-Review-StatusJa
Extern publiziertJa

Schlagworte

Forschungsprofillinien der TU Dresden

Ziele für nachhaltige Entwicklung

Schlagwörter

  • 2D-3D thin film transition, 3D-nanopillar, crystallization mechanism, graphene, organic photovoltaic (OPV), single-crystalline