Interstitial Defect Modulation Promotes Thermoelectric Properties of p-Type HfNiSn

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Xin Ai - , Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Wenhua Xue - , CAS - Institute of Physics (Autor:in)
  • Lars Giebeler - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Nicolás Pérez - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Binghua Lei - , Hunan University (Autor:in)
  • Yue Zhang - , CAS - Institute of Physics (Autor:in)
  • Qihao Zhang - , Karlsruher Institut für Technologie (Autor:in)
  • Kornelius Nielsch - , Institut für Angewandte Physik (IAP), Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Yumei Wang - , CAS - Institute of Physics, Songshan Lake Materials Laboratory (Autor:in)
  • Ran He - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

The n-type MNiSn (M = Ti, Zr, or Hf) half-Heusler compounds are reported as promising medium- and high-temperature thermoelectric materials; however, their p-type counterparts have suffered from poor performance due to the in-gap state caused by Ni occupying the tetrahedral interstitials. Inspired by recent findings that thermoelectric performance can be enhanced without substantially increasing compositional or structural complexity, the study attempts to manipulate the Ni interstitial defects by altering the stoichiometric composition. The results show that when HfNiSn is prepared by a non-equilibrium method, the intrinsic Ni defects are effectively suppressed by simply reducing the nominal Ni content. The suppression of Ni defects not only leads to a larger bandgap, but also attenuates carrier scattering to achieve higher mobility. After further optimization of the carrier concentration, the p-type HfNi0.85Co0.05Sn achieves a maximum power factor of 3100 µW m−1 K−2 at 773 K and a peak zT of ≈0.7 at 973 K, both of which are superior to that of the state-of-the-art p-type MNiSn. The results demonstrate that the off-stoichiometric ratio is effective in decoupling electron-phonon transports of thermoelectric materials with massive intrinsic defects, and also contribute to understanding the role of defect modulation in optimizing thermoelectric properties.

Details

OriginalspracheEnglisch
Aufsatznummer2401345
FachzeitschriftAdvanced energy materials
Jahrgang14
Ausgabenummer38
PublikationsstatusVeröffentlicht - 11 Okt. 2024
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • defect modulation, intrinsic interstitial defects, p-type HfNiSn half-Heusler, thermoelectric properties