Interparticle Charge-Transport-Enhanced Electrochemiluminescence of Quantum-Dot Aerogels

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Xuwen Gao - , Shandong University (Autor:in)
  • Guocan Jiang - , Professur für Physikalische Chemie, Technische Universität Dresden (Autor:in)
  • Cunyuan Gao - , Shandong University (Autor:in)
  • Anatol Prudnikau - , Professur für Physikalische Chemie, Technische Universität Dresden (Autor:in)
  • René Hübner - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Jinhua Zhan - , Shandong University (Autor:in)
  • Guizheng Zou - , Shandong University (Autor:in)
  • Alexander Eychmüller - , Professur für Physikalische Chemie, Technische Universität Dresden (Autor:in)
  • Bin Cai - , Shandong University (Autor:in)

Abstract

Electrochemiluminescence (ECL) represents a widely explored technique to generate light, in which the emission intensity relies critically on the charge-transfer reactions between electrogenerated radicals. Two types of charge-transfer mechanisms have been postulated for ECL generation, but the manipulation and effective probing of these routes remain a fundamental challenge. Here, we demonstrate the design of quantum dot (QD) aerogels as novel ECL luminophores via a versatile water-induced gelation strategy. The strong electronic coupling between adjacent QDs enables efficient charge transport within the aerogel network, leading to the generation of highly efficient ECL based on the selectively improved interparticle charge-transfer route. This mechanism is further verified by designing CdSe-CdTe mixed QD aerogels, where the two mechanistic routes are clearly decoupled for ECL generation. We anticipate our work will advance the fundamental understanding of ECL and prove useful for designing next-generation QD-based devices.

Details

OriginalspracheEnglisch
Aufsatznummere202214487
FachzeitschriftAngewandte Chemie - International Edition
Jahrgang62
Ausgabenummer2
PublikationsstatusVeröffentlicht - 9 Jan. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 36347831

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Charge Transfer, Electrochemiluminescence, Electrochemistry, Quantum Dots, Sol–Gel Processes