Interior Schauder Estimates for Elliptic Equations Associated with Lévy Operators
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study the local regularity of solutions f to the integro-differential equationAf=ginU for open sets U⊆ ℝd, where A is the infinitesimal generator of a Lévy process (Xt)t≥ 0. Under the assumption that the transition density of (Xt)t≥ 0 satisfies a certain gradient estimate, we establish interior Schauder estimates for both pointwise and weak solutions f. Our results apply for a wide class of Lévy generators, including generators of stable Lévy processes and subordinated Brownian motions.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 459-481 |
Seitenumfang | 23 |
Fachzeitschrift | Potential Analysis |
Jahrgang | 56 (2022) |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 23 Jan. 2021 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Gradient estimate, Hölder space, Integro-differential equation, Lévy process, Schauder estimate