Interactive Behavior Modeling for Vulnerable Road Users With Risk-Taking Styles in Urban Scenarios: A Heterogeneous Graph Learning Approach

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Zirui Li - , Beijing Institute of Technology (Autor:in)
  • Jianwei Gong - , Beijing Institute of Technology (Autor:in)
  • Zheyu Zhang - , Beijing Institute of Technology (Autor:in)
  • Chao Lu - , Beijing Institute of Technology (Autor:in)
  • Victor L. Knoop - , Technische Universität Delft (Autor:in)
  • Meng Wang - , Professur für Verkehrsprozessautomatisierung, Technische Universität Dresden (Autor:in)

Abstract

The deep understanding of the behaviors of traffic participants is essential to guarantee the safety of automated vehicles (AV) in mixed traffic with vulnerable road users (VRUs). Precise trajectory prediction of traffic participants can provide reasonable solution space for motion planning of AV. Early works mainly focused on handcrafting the feature representation and designing complicated architectures in deep learning-based prediction models. However, these approaches overlooked the fact that different road users perceive the safety of the same interaction differently and also exhibit heterogeneous risk-taking styles. In this paper, we will develop a model for trajectory prediction based on risk-taking styles. The model accounts for the expected positions and occupancy of traffic participants in the surrounding environment. It consists of two sequential steps: risk-taking styles of multi-modal road users under interactive scenes are first clustered, and then reformulated in the heterogeneous graph model for trajectory prediction. The model is validated by the driving data collected on the urban road using a public dataset. Comparative experiments demonstrate that the proposed method can predict the trajectory of traffic participants much more accurately than the state-of-the-art methods.

Details

OriginalspracheEnglisch
Seiten (von - bis)8538-8555
Seitenumfang18
FachzeitschriftIEEE Transactions on Intelligent Transportation Systems
Jahrgang25
Ausgabenummer8
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Externe IDs

Mendeley 77143673-5e18-3ac5-8508-ec4ade4cd910
ORCID /0000-0001-6555-5558/work/171064781

Schlagworte

Schlagwörter

  • heterogeneous graph model, interactive behavior modeling, risk-taking behaviors, trajectory prediction, Vulnerable road users