Interaction-Aware Trajectory Prediction for Safe Motion Planning in Autonomous Driving: A Transformer-Transfer Learning Approach

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jinhao Liang - , National University of Singapore (Autor:in)
  • Chaopeng Tan - , Professur für Verkehrsprozessautomatisierung (Autor:in)
  • Longhao Yan - , National University of Singapore (Autor:in)
  • Jingyuan Zhou - , National University of Singapore (Autor:in)
  • Guodong Yin - , Southeast University, Nanjing (Autor:in)
  • Kaidi Yang - , National University of Singapore (Autor:in)

Abstract

A critical aspect of safe and efficient motion planning for autonomous vehicles (AVs) is to handle the complex and uncertain behavior of surrounding human-driven vehicles (HDVs). Despite intensive research on driver behavior prediction, existing approaches often overlook the interactions between AVs and HDVs, assuming that HDV trajectories are not influenced by AV actions. To address this gap, we present a transformer-transfer learning-based interaction-aware trajectory predictor for safe motion planning in autonomous driving, focusing on a vehicle-to-vehicle (V2V) interaction scenario involving an AV and an HDV. Specifically, we construct a transformer-based interaction-aware trajectory predictor using widely available datasets of HDV trajectory data and further transfer the learned predictor using a small set of AV-HDV interaction data. Then, to better incorporate the proposed trajectory predictor into the motion planning module of AVs, we introduce an uncertainty quantification method to characterize the predictor’s errors, which are integrated into the path-planning process. Our experimental results demonstrate the value of explicitly considering interactions and handling uncertainties.

Details

OriginalspracheEnglisch
Seiten (von - bis)17080-17095
Seitenumfang16
FachzeitschriftIEEE Transactions on Intelligent Transportation Systems
Jahrgang26
Ausgabenummer10
Frühes Online-Datum21 Juli 2025
PublikationsstatusVeröffentlicht - Okt. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4737-5304/work/194826599

Schlagworte

Schlagwörter

  • Autonomous vehicles, interaction-aware trajectory prediction, motion planning, transfer learning, uncertain quantification