Integration of mathematical model predictions into routine workflows to support clinical decision making in haematology

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Katja Hoffmann - , Technische Universität Dresden (Autor:in)
  • Katja Cazemier - , Technische Universität Dresden (Autor:in)
  • Christoph Baldow - , Institut für Medizinische Informatik und Biometrie (Autor:in)
  • Silvio Schuster - , Technische Universität Dresden (Autor:in)
  • Yuri Kheifetz - , Universität Leipzig (Autor:in)
  • Sibylle Schirm - , Universität Leipzig (Autor:in)
  • Matthias Horn - , Universität Leipzig (Autor:in)
  • Thomas Ernst - , Universitätsklinikum Jena (Autor:in)
  • Constanze Volgmann - , Universitätsklinikum Jena (Autor:in)
  • Christian Thiede - , Medizinische Klinik und Poliklinik I, Lahey Clinic Medical Center, Burlington, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Andreas Hochhaus - , Universitätsklinikum Jena (Autor:in)
  • Martin Bornhäuser - , Medizinische Klinik und Poliklinik I, Lahey Clinic Medical Center, Burlington, Universitätsklinikum Carl Gustav Carus Dresden, Nationales Zentrum für Tumorerkrankungen (NCT) Heidelberg (Autor:in)
  • Meinolf Suttorp - , Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Markus Scholz - , Universität Leipzig (Autor:in)
  • Ingmar Glauche - , Institut für Medizinische Informatik und Biometrie (Autor:in)
  • Markus Loeffler - , Universität Leipzig (Autor:in)
  • Ingo Roeder - , Institut für Medizinische Informatik und Biometrie, Nationales Zentrum für Tumorerkrankungen (NCT) Heidelberg (Autor:in)

Abstract

BACKGROUND: Individualization and patient-specific optimization of treatment is a major goal of modern health care. One way to achieve this goal is the application of high-resolution diagnostics together with the application of targeted therapies. However, the rising number of different treatment modalities also induces new challenges: Whereas randomized clinical trials focus on proving average treatment effects in specific groups of patients, direct conclusions at the individual patient level are problematic. Thus, the identification of the best patient-specific treatment options remains an open question. Systems medicine, specifically mechanistic mathematical models, can substantially support individual treatment optimization. In addition to providing a better general understanding of disease mechanisms and treatment effects, these models allow for an identification of patient-specific parameterizations and, therefore, provide individualized predictions for the effect of different treatment modalities.

RESULTS: In the following we describe a software framework that facilitates the integration of mathematical models and computer simulations into routine clinical processes to support decision-making. This is achieved by combining standard data management and data exploration tools, with the generation and visualization of mathematical model predictions for treatment options at an individual patient level.

CONCLUSIONS: By integrating model results in an audit trail compatible manner into established clinical workflows, our framework has the potential to foster the use of systems-medical approaches in clinical practice. We illustrate the framework application by two use cases from the field of haematological oncology.

Details

OriginalspracheEnglisch
Aufsatznummer28
FachzeitschriftBMC medical informatics and decision making
Jahrgang20
Ausgabenummer1
PublikationsstatusVeröffentlicht - 10 Feb. 2020
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC7011438
Scopus 85079222725
ORCID /0000-0002-2524-1199/work/142251504

Schlagworte

Schlagwörter

  • Clinical Decision-Making/methods, Computer Simulation, Decision Support Systems, Clinical, Hematologic Diseases, Humans, Models, Theoretical, Proof of Concept Study, Software, Workflow