Integrating Multi-Graph Convolutional Networks and Temporal-Aware Multi-Head Attention for Lane-Level Traffic Flow Prediction in Urban Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Fengmei Sun - , Tongji University (Autor:in)
  • Hong Zhu - , Tongji University (Autor:in)
  • Keshuang Tang - , Tongji University (Autor:in)
  • Yingchang Xiong - , Tongji University (Autor:in)
  • Chaopeng Tan - , Technische Universität Delft (Autor:in)
  • Zhixian Tang - , Hong Kong Polytechnic University (Autor:in)

Abstract

The urban signalized road network, characterized by its dynamic and complex nature due to frequent signal control adjustments and unpredictable demand fluctuations, presents significant challenges for predicting lane-level traffic flow. This study introduces the innovative MGCN-TAMA model, which addresses these challenges by integrating multi-graph convolutional networks with a temporal-aware multi-head attention mechanism. The proposed model employs three types of adjacency matrices-a geographical matrix, a signal matrix, and an attention matrix-to capture the complex spatial dependencies among various traffic approaches. Additionally, the model utilizes temporal-aware multi-head attention to discern the nonlinear correlations in traffic variations over time. Tested on a real-world dataset from Tongxiang City, the MGCN-TAMA model significantly outperforms traditional models. Notably, in the first 30-minute prediction interval, our model achieves the lowest Mean Absolute Error, with 2.5649 vehicles per 5-minute span. These results underscore the effectiveness of combining graph-based methods with advanced attention mechanisms to enhance the accuracy of predicting lane-level traffic volumes in urban networks.

Details

OriginalspracheEnglisch
Titel2024 IEEE 27th International Conference on Intelligent Transportation Systems, ITSC 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten1878-1884
Seitenumfang7
ISBN (elektronisch)9798331505929
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN2153-0009

Konferenz

Titel27th IEEE International Conference on Intelligent Transportation Systems
KurztitelIEEE ITSC 2024
Veranstaltungsnummer27
Dauer24 - 27 September 2024
Webseite
OrtEdmonton Convention Centre
StadtEdmonton
LandKanada

Externe IDs

ORCID /0000-0003-4737-5304/work/182431676

Schlagworte