Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson’s disease

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Cyril Brzenczek - , University of Luxembourg (Autor:in)
  • Quentin Klopfenstein - , University of Luxembourg (Autor:in)
  • Tom Hähnel - , Klinik und Poliklinik für Neurologie, Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen (Autor:in)
  • Holger Fröhlich - , Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen, Universität Bonn (Autor:in)
  • Enrico Glaab - , University of Luxembourg (Autor:in)
  • NCER-PD Consortium - (Autor:in)

Abstract

Parkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.

Details

OriginalspracheEnglisch
Aufsatznummer235
Fachzeitschrift npj digital medicine
Jahrgang7
Ausgabenummer1
PublikationsstatusVeröffentlicht - 6 Sept. 2024
Peer-Review-StatusJa

Externe IDs

unpaywall 10.1038/s41746-024-01236-z
PubMed 39242660
Scopus 85203273723