INSPIRATION MINING FOR CARBON CONCRETE DESIGN – THROUGH MACHINE LEARNING AND ARTISTIC CREATIVITY

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

This paper targets a new support process for inspiration in civil engineering design. First the notion of inspiration within the engineering design process is briefly explained, and existing approaches for automated creativity support are reviewed. Further the definition and procedural layout of the “inspiration mining” process is introduced, and hypotheses on “inspiration objects” and key processes (matching of inspiration objects and engineering tasks) are formulated. The semantic and visual distance of these objects to the engineering challenge is a crucial factor and needs to be quantified to retrieve relevant concepts. In order to map visual similarity within a sample from the WikiArt dataset, we train a Convolutional Neural Network in an autoencoder setup on the data. The generated image embedding is used to compare it to the approach of Transfer Learning on the same dataset by a pre-trained neural network model (VGG19 on ImageNet dataset).

Details

OriginalspracheEnglisch
TitelProceedings for the 6th fib International Congress, 2022- Concrete Innovation for Sustainability
Redakteure/-innenStine Stokkeland, Henny Cathrine Braarud
Herausgeber (Verlag)fib. The International Federation for Structural Concrete
Seiten1137-1146
Seitenumfang10
ISBN (Print)9782940643158
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

Reihefib Symposium
ISSN2617-4820

Konferenz

Titel6th fib International Congress
UntertitelConcrete Innovation for Sustainability
Kurztitelfib 2022
Veranstaltungsnummer6
Dauer12 - 16 Juni 2022
BekanntheitsgradInternationale Veranstaltung
OrtClarion Hotel The Hub
StadtOslo
LandNorwegen

Externe IDs

ORCID /0000-0002-5984-5812/work/142660227

Schlagworte

Schlagwörter

  • artistic creativity, CRC/TRR280, engineering design, ideation, machine learning