INSPIRATION MINING FOR CARBON CONCRETE DESIGN – THROUGH MACHINE LEARNING AND ARTISTIC CREATIVITY
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
This paper targets a new support process for inspiration in civil engineering design. First the notion of inspiration within the engineering design process is briefly explained, and existing approaches for automated creativity support are reviewed. Further the definition and procedural layout of the “inspiration mining” process is introduced, and hypotheses on “inspiration objects” and key processes (matching of inspiration objects and engineering tasks) are formulated. The semantic and visual distance of these objects to the engineering challenge is a crucial factor and needs to be quantified to retrieve relevant concepts. In order to map visual similarity within a sample from the WikiArt dataset, we train a Convolutional Neural Network in an autoencoder setup on the data. The generated image embedding is used to compare it to the approach of Transfer Learning on the same dataset by a pre-trained neural network model (VGG19 on ImageNet dataset).
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings for the 6th fib International Congress, 2022- Concrete Innovation for Sustainability |
Redakteure/-innen | Stine Stokkeland, Henny Cathrine Braarud |
Herausgeber (Verlag) | fib. The International Federation for Structural Concrete |
Seiten | 1137-1146 |
Seitenumfang | 10 |
ISBN (Print) | 9782940643158 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | fib Symposium |
---|---|
ISSN | 2617-4820 |
Konferenz
Titel | 6th fib International Congress |
---|---|
Untertitel | Concrete Innovation for Sustainability |
Kurztitel | fib 2022 |
Veranstaltungsnummer | 6 |
Dauer | 12 - 16 Juni 2022 |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Clarion Hotel The Hub |
Stadt | Oslo |
Land | Norwegen |
Externe IDs
ORCID | /0000-0002-5984-5812/work/142660227 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- artistic creativity, CRC/TRR280, engineering design, ideation, machine learning