Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Helge Eggers - , Karlsruher Institut für Technologie, InnovationLab GmbH (Autor:in)
  • Fabian Schackmar - , Karlsruher Institut für Technologie, InnovationLab GmbH (Autor:in)
  • Tobias Abzieher - , Karlsruher Institut für Technologie (Autor:in)
  • Qing Sun - , Universität Heidelberg (Autor:in)
  • Uli Lemmer - , Karlsruher Institut für Technologie, InnovationLab GmbH (Autor:in)
  • Yana Vaynzof - , Center for Advancing Electronics Dresden (cfaed), Dresden Integrated Center for Applied Physics and Photonics Materials (DC-IAPP), Universität Heidelberg (Autor:in)
  • Bryce S. Richards - , Karlsruher Institut für Technologie (Autor:in)
  • Gerardo Hernandez-Sosa - , Karlsruher Institut für Technologie, InnovationLab GmbH (Autor:in)
  • Ulrich W. Paetzold - , Karlsruher Institut für Technologie (Autor:in)

Abstract

Transferring the high power conversion efficiencies (PCEs) of spin-coated perovskite solar cells (PSCs) on the laboratory scale to large-area photovoltaic modules requires a significant advance in scalable fabrication methods. Digital inkjet printing promises scalable, material, and cost-efficient deposition of perovskite thin films on a wide range of substrates and in arbitrary shapes. In this work, high-quality inkjet-printed triple-cation (methylammonium, formamidinium, and cesium) perovskite layers with exceptional thicknesses of >1 µm are demonstrated, enabling unprecedentedly high PCEs > 21% and stabilized power output efficiencies > 18% for inkjet-printed PSCs. In-depth characterization shows that the thick inkjet-printed perovskite thin films deposited using the process developed herein exhibit a columnar crystal structure, free of horizontal grain boundaries, which extend over the entire thickness. A thin film thickness of around 1.5 µm is determined as optimal for PSC for this process. Up to this layer thickness X-ray photoemission spectroscopy analysis confirms the expected stoichiometric perovskite composition at the surface and shows strong deviations and inhomogeneities for thicker thin films. The micrometer-thick perovskite thin films exhibit remarkably long charge carrier lifetimes, highlighting their excellent optoelectronic characteristics. They are particularly promising for next-generation inkjet-printed perovskite solar cells, photodetectors, and X-ray detectors.

Details

OriginalspracheEnglisch
Aufsatznummer1903184
FachzeitschriftAdvanced energy materials
Jahrgang10
Ausgabenummer6
PublikationsstatusVeröffentlicht - 1 Feb. 2020
Peer-Review-StatusJa

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • high diffusion lengths, inkjet printing, large columnar crystal grains, perovskite solar cells