Influence Estimation In Multi-Step Process Chains Using Quantum Bayesian Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Digital representatives of physical assets and process steps play a decisive role in analysing properties and evaluating the quality of the process. So-called digital twins acquire all relevant planning and process data, which provide the basis, for example, to investigate path accuracies in manufacturing. Each single process step aims to perform an ideal machining after the specification of a target geometry. However, the practical implementation of a step usually shows deviations from the targeted shape. The machine-learning based method of probabilistic Bayesian networks enables the quality estimation of the holistic process chain as well as improvements by targeted considerations of single steps and influence factors. However, the handling of large-scale Bayesian networks requires a high computational effort, whereas the processing with quantum algorithms holds potential improvements in storage and performance. Based on the issue of path accuracy, this paper considers the modelling and influence estimation for a milling operation including experiments on superconducting quantum hardware.

Details

OriginalspracheEnglisch
TitelINFORMATIK 2022 - Informatik in den Naturwissenschaften
Redakteure/-innenDaniel Demmler, Daniel Krupka, Hannes Federrath
Herausgeber (Verlag)Gesellschaft fur Informatik (GI)
Seiten1163-1173
Seitenumfang11
ISBN (elektronisch)9783885797203
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)
BandP-326
ISSN1617-5468

(Fach-)Tagung

Titel52. Jahrestagung der Gesellschaft für Informatik
UntertitelInformatik in den Naturwissenschaften
KurztitelINFORMATIK 2022
Veranstaltungsnummer52
Dauer26 - 30 September 2022
OrtUniversität Hamburg
StadtHamburg
LandDeutschland

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Bayesian networks, digital twin, manufacturing, path accuracy, quantum algorithm, quantum circuit