Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Frederic Schell - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Richard Chukwudi Okafor - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Tobias Steege - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Sabri Alamri - , Fusion Bionic GmbH (Autor:in)
  • Savan Ghevariya - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Christoph Zwahr - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Andrés F. Lasagni - , Professur für Laserbasierte Fertigung, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)

Abstract

With the increasing processing power of micro-electronic components and increasing spatial limitations, ensuring sufficient heat dissipation has become a crucial task. This work presents a microscopic approach to increasing the surface area through periodic surface structures. Microstructures with a periodic distance of 8.5 µm are fabricated via Direct Laser Interference Patterning (DLIP) on stainless steel plates with a nanosecond-pulsed infrared laser and are characterized by their developed interfacial area ratio. The optimal structuring parameters for increasing the surface area were investigated, reaching peak-to-valley depths up to 12.8 µm and increasing surface area by up to 394%. Heat dissipation in a natural convection environment was estimated by measuring the output voltage of a Peltier element mounted between a hot plate and a textured sample. The resulting increase in output voltage compared to an unstructured sample was correlated to the structure depth and developed interfacial area ratio, finding a maximum increase of 51.4%. Moreover, it was shown that the output voltage correlated well with the structure depth and surface area.

Details

OriginalspracheEnglisch
Aufsatznummer1730
FachzeitschriftMicromachines
Jahrgang14
Ausgabenummer9
PublikationsstatusVeröffentlicht - 2 Sept. 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85172738355

Schlagworte