Improving Performance of Turn-milling by Controlling Forces and Thermally Induced Tool-center Point (TCP) Displacement
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Improving performance during fine turn-milling operations including accuracy and productivity requires controlling of the cutting forces and the thermally induced displacement of the cutting edge. The objective of this investigation is to determine the thermally induced displacement of TCP during turn-milling and to reduce this displacement by using pressurized cooled air. The forces and tool elongation simulated by FEM are compared to measured values. It was shown that the amount of tool elongation could be 40% of the depth of cut in fine turn-milling, and it is possible to predict the tool elongation by FEM. Furthermore, cooled air can reduce the tool elongation by 65%.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 481-485 |
Seitenumfang | 5 |
Fachzeitschrift | Procedia CIRP |
Jahrgang | 40 |
Publikationsstatus | Veröffentlicht - 2016 |
Peer-Review-Status | Ja |
Konferenz
Titel | 13th Global Conference on Sustainable Manufacturing, GCSM 2015 |
---|---|
Dauer | 16 - 18 September 2015 |
Stadt | Binh Du'o'ng New City |
Land | Vietnam |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Finite Element Method (FEM), Machining, Thermal effects