Impact of NaH on the Electrochemical Performance of Sodium Batteries

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexander Thomas - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Björn Pohle - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Marcus Schmidt - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Henrik Gerd Bischoff - , Schaufler-Professur für Kälte-, Kryo- und Kompressorentechnik (Autor:in)
  • Marius Lau - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Felix Heubner - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Stefan Kaskel - , Professur für Anorganische Chemie (I) (AC1) (Autor:in)
  • Daria Mikhailova - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

Secondary reactions and solid-electrolyte interface (SEI) formation are crucial aspects for battery lifetime. We show that one part of a natural SEI consists of crystalline NaH, which is formed on the sodium surface when carbonate-based electrolytes are used. Its impact on the electrochemical performance was studied using room-temperature H2-treated Na anodes and a NaH-Na composite anode. Depending on the preparation conditions, hydrogen was stored on the Na surface in the form of NaOH, enhancing the long-term performance of the cell with a layered Na-oxide cathode, or in the form of NaH, deteriorating the performance in comparison to a reference Na cell. With the help of thermogravimetry coupled with mass spectrometry, we identified an explosion-like thermal decomposition of fatigued Na anodes above approximately 120 °C, but H2-treated anodes exhibited higher stability of 10-30 °C compared to the reference anode. The composite NaH-Na anode shows a lower electrochemical capacity but no thermally induced explosion. Therefore, for a highly reactive metallic sodium anode, an effective protective layer against liquid electrolyte components is necessary to achieve high capacities and stable long-term operation. This passivation layer must fulfill the requirement of inertness to hydrogen gas to ensure a long lifetime.

Details

OriginalspracheEnglisch
Seiten (von - bis)2699-2711
Seitenumfang13
FachzeitschriftACS omega
Jahrgang10
Ausgabenummer3
PublikationsstatusVeröffentlicht - 28 Jan. 2025
Peer-Review-StatusJa

Externe IDs

PubMed 39895743