Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Stefania Cacovich - , Université Paris-Saclay (Autor:in)
  • Guillaume Vidon - , Institut Photovoltaïque d’Ile-de-France (IPVF) (Autor:in)
  • Matteo Degani - , Università degli Studi di Pavia (Autor:in)
  • Marie Legrand - , Institut Photovoltaïque d’Ile-de-France (IPVF), Électricité de France S.A. (Autor:in)
  • Laxman Gouda - , Università degli Studi di Pavia (Autor:in)
  • Jean Baptiste Puel - , Institut Photovoltaïque d’Ile-de-France (IPVF) (Autor:in)
  • Yana Vaynzof - , Center for Advancing Electronics Dresden (cfaed), Dresden Integrated Center for Applied Physics and Photonics Materials (Autor:in)
  • Jean François Guillemoles - , Université Paris-Saclay (Autor:in)
  • Daniel Ory - , Institut Photovoltaïque d’Ile-de-France (IPVF) (Autor:in)
  • Giulia Grancini - , Università degli Studi di Pavia (Autor:in)

Abstract

Interface engineering through passivating agents, in the form of organic molecules, is a powerful strategy to enhance the performance of perovskite solar cells. Despite its pivotal function in the development of a rational device optimization, the actual role played by the incorporation of interfacial modifications and the interface physics therein remains poorly understood. Here, we investigate the interface and device physics, quantifying charge recombination and charge losses in state-of-the-art inverted solar cells with power conversion efficiency beyond 23% - among the highest reported so far - by using multidimensional photoluminescence imaging. By doing that we extract physical parameters such as quasi-Fermi level splitting (QFLS) and Urbach energy enabling us to assess that the main passivation mechanism affects the perovskite/PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) interface rather than surface defects. In this work, by linking optical, electrical measurements and modelling we highlight the benefits of organic passivation, made in this case by phenylethylammonium (PEAI) based cations, in maximising all the photovoltaic figures of merit.

Details

OriginalspracheEnglisch
Aufsatznummer2868
FachzeitschriftNature communications
Jahrgang13
Ausgabenummer1
PublikationsstatusVeröffentlicht - 23 Mai 2022
Peer-Review-StatusJa

Externe IDs

PubMed 35606374