Image enhancement by gradient distribution specification
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We propose to use gradient distribution specification for image enhancement. The specified gradient distribution is learned from natural-scene image datasets. This enhances image quality based on two facts: First, the specified distribution is independent of image content. Second, the distance between the learned distribution and the empirical distribution of a given image correlates with subjectively perceived image quality. Based on those two facts, remapping an image such that the distribution of its gradients (and therefore also Laplacians) matches the specified distribution is expected to improve the quality of that image. We call this process “image naturalization”. Our experiments confirm that naturalized images are more appealing to visual perception. Moreover, “naturalness” can be used as a measure of image quality when ground-truth is unknown.
Details
Originalsprache | Englisch |
---|---|
Titel | Computer Vision - ACCV 2014 Workshops |
Redakteure/-innen | C.V. Jawahar, Shiguang Shan |
Herausgeber (Verlag) | Springer Verlag |
Seiten | 47-62 |
Seitenumfang | 16 |
ISBN (Print) | 9783319166308 |
Publikationsstatus | Veröffentlicht - 2015 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science, Volume 9009 |
---|---|
ISSN | 0302-9743 |
Konferenz
Titel | 12th Asian Conference on Computer Vision, ACCV 2014 |
---|---|
Dauer | 1 - 2 November 2014 |
Stadt | Singapore |
Land | Singapur |
Externe IDs
ORCID | /0000-0003-4414-4340/work/142252169 |
---|