Image enhancement by gradient distribution specification

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

We propose to use gradient distribution specification for image enhancement. The specified gradient distribution is learned from natural-scene image datasets. This enhances image quality based on two facts: First, the specified distribution is independent of image content. Second, the distance between the learned distribution and the empirical distribution of a given image correlates with subjectively perceived image quality. Based on those two facts, remapping an image such that the distribution of its gradients (and therefore also Laplacians) matches the specified distribution is expected to improve the quality of that image. We call this process “image naturalization”. Our experiments confirm that naturalized images are more appealing to visual perception. Moreover, “naturalness” can be used as a measure of image quality when ground-truth is unknown.

Details

OriginalspracheEnglisch
TitelComputer Vision - ACCV 2014 Workshops
Redakteure/-innenC.V. Jawahar, Shiguang Shan
Herausgeber (Verlag)Springer Verlag
Seiten47-62
Seitenumfang16
ISBN (Print)9783319166308
PublikationsstatusVeröffentlicht - 2015
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science, Volume 9009
ISSN0302-9743

Konferenz

Titel12th Asian Conference on Computer Vision, ACCV 2014
Dauer1 - 2 November 2014
StadtSingapore
LandSingapur

Externe IDs

ORCID /0000-0003-4414-4340/work/142252169

Schlagworte