Image classification by cellular nonlinear networks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
In this contribution an image classification by uncoupled Cellular Nonlinear Networks (CNN) is proposed and evaluated on typical datasets, like CIFAR-10 and MNIST. The algorithm is based on the application of backpropagation for the training of synaptic coupling weights and is capable of binary classification by means of a threshold-based classifier. The design is inspired by recent deep neural network architectures, but can be implemented on a CNN Universal Machine, enabling complex image recognition on low-power embedded devices.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | IEEE International Symposium on Circuits and Systems |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| ISBN (elektronisch) | 9781467368520 |
| Publikationsstatus | Veröffentlicht - 25 Sept. 2017 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Proceedings - IEEE International Symposium on Circuits and Systems |
|---|---|
| ISSN | 0271-4310 |
Konferenz
| Titel | IEEE International Symposium on Circuits and Systems 2017 |
|---|---|
| Kurztitel | ISCAS 2017 |
| Veranstaltungsnummer | 50 |
| Dauer | 28 - 31 Mai 2017 |
| Stadt | Baltimore |
| Land | USA/Vereinigte Staaten |
Externe IDs
| ORCID | /0000-0001-7436-0103/work/172566317 |
|---|---|
| ORCID | /0000-0001-9875-3534/work/172568322 |