Image classification by cellular nonlinear networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

In this contribution an image classification by uncoupled Cellular Nonlinear Networks (CNN) is proposed and evaluated on typical datasets, like CIFAR-10 and MNIST. The algorithm is based on the application of backpropagation for the training of synaptic coupling weights and is capable of binary classification by means of a threshold-based classifier. The design is inspired by recent deep neural network architectures, but can be implemented on a CNN Universal Machine, enabling complex image recognition on low-power embedded devices.

Details

OriginalspracheEnglisch
TitelIEEE International Symposium on Circuits and Systems
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781467368520
PublikationsstatusVeröffentlicht - 25 Sept. 2017
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings - IEEE International Symposium on Circuits and Systems
ISSN0271-4310

Konferenz

Titel50th IEEE International Symposium on Circuits and Systems, ISCAS 2017
Dauer28 - 31 Mai 2017
StadtBaltimore
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0001-7436-0103/work/172566317
ORCID /0000-0001-9875-3534/work/172568322

Schlagworte

ASJC Scopus Sachgebiete