Identifying compound weather drivers of forest biomass loss with generative deep learning

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Mohit Anand - , Professur Data Analytics in Hydro Sciences (gB/UFZ), Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Friedrich J. Bohn - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Gustau Camps-Valls - , University of Valencia (Autor:in)
  • Rico Fischer - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Andreas Huth - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Lily Belle Sweet - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Jakob Zscheischler - , Professur Data Analytics in Hydro Sciences (gB/UFZ), Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)

Abstract

Globally, forests are net carbon sinks that partly mitigates anthropogenic climate change. However, there is evidence of increasing weather-induced tree mortality, which needs to be better understood to improve forest management under future climate conditions. Disentangling drivers of tree mortality is challenging because of their interacting behavior over multiple temporal scales. In this study, we take a data-driven approach to the problem. We generate hourly temperate weather data using a stochastic weather generator to simulate 160,000 years of beech, pine, and spruce forest dynamics with a forest gap model. These data are used to train a generative deep learning model (a modified variational autoencoder) to learn representations of three-year-long monthly weather conditions (precipitation, temperature, and solar radiation) in an unsupervised way. We then associate these weather representations with years of high biomass loss in the forests and derive weather prototypes associated with such years. The identified prototype weather conditions are associated with 5-22% higher median biomass loss compared to the median of all samples, depending on the forest type and the prototype. When prototype weather conditions co-occur, these numbers increase to 10-25%. Our research illustrates how generative deep learning can discover compounding weather patterns associated with extreme impacts.

Details

OriginalspracheEnglisch
Aufsatznummere4
FachzeitschriftEnvironmental Data Science
Jahrgang3
PublikationsstatusVeröffentlicht - 12 Feb. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-6045-1629/work/197321859

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • compound events, extreme events, forest mortality, generative deep learning, variational autoencoder