Identification of key factors for malnutrition diagnosis in chronic gastrointestinal diseases using machine learning underscores the importance of GLIM criteria as well as additional parameters

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Karen Rischmüller - , Universität Rostock (Autor:in)
  • Vanessa Caton - , Universität Rostock (Autor:in)
  • Markus Wolfien - , Institut für Medizinische Informatik und Biometrie, Universität Rostock, Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig (Autor:in)
  • Luise Ehlers - , Universität Rostock (Autor:in)
  • Matti van Welzen - , Universität Rostock (Autor:in)
  • David Brauer - , Universität Rostock (Autor:in)
  • Lea F. Sautter - , Universität Rostock (Autor:in)
  • Fatuma Meyer - , Hochschule Neubrandenburg (Autor:in)
  • Luzia Valentini - , Hochschule Neubrandenburg (Autor:in)
  • Mats L. Wiese - , Ernst-Moritz-Arndt-Universität Greifswald (Autor:in)
  • Ali A. Aghdassi - , Ernst-Moritz-Arndt-Universität Greifswald (Autor:in)
  • Robert Jaster - , Universität Rostock (Autor:in)
  • Olaf Wolkenhauer - , Universität Rostock, Technische Universität München (Autor:in)
  • Georg Lamprecht - , Universität Rostock (Autor:in)
  • Saptarshi Bej - , Universität Rostock, Indian Institute of Science Education and Research Thiruvananthapuram (Autor:in)

Abstract

INTRODUCTION: Disease-related malnutrition is common but often underdiagnosed in patients with chronic gastrointestinal diseases, such as liver cirrhosis, short bowel and intestinal insufficiency, and chronic pancreatitis. To improve malnutrition diagnosis in these patients, an evaluation of the current Global Leadership Initiative on Malnutrition (GLIM) diagnostic criteria, and possibly the implementation of additional criteria, is needed.

AIM: This study aimed to identify previously unknown and potentially specific features of malnutrition in patients with different chronic gastrointestinal diseases and to validate the relevance of the GLIM criteria for clinical practice using machine learning (ML).

METHODS: Between 10/2018 and 09/2021, n = 314 patients and controls were prospectively enrolled in a cross-sectional study. A total of n = 230 features (anthropometric data, body composition, handgrip strength, gait speed, laboratory values, dietary habits, physical activity, mental health) were recorded. After data preprocessing (cleaning, feature exploration, imputation of missing data), n = 135 features were included in the ML analyses. Supervised ML models were used to classify malnutrition, and key features were identified using SHapley Additive exPlanations (SHAP).

RESULTS: Supervised ML effectively classified malnourished versus non-malnourished patients and controls. Excluding the existing GLIM criteria and malnutrition risk reduced model performance (sensitivity -19%, specificity -8%, F1-score -10%), highlighting their significance. Besides some GLIM criteria (weight loss, reduced food intake, disease/inflammation), additional anthropometric (hip and upper arm circumference), body composition (phase angle, SMMI), and laboratory markers (albumin, pseudocholinesterase, prealbumin) were key features for malnutrition classification.

CONCLUSION: ML analysis confirmed the clinical applicability of the current GLIM criteria and identified additional features that may improve malnutrition diagnosis and understanding of the pathophysiology of malnutrition in chronic gastrointestinal diseases.

Details

OriginalspracheEnglisch
Aufsatznummer1479501
Seiten (von - bis)1479501
FachzeitschriftFrontiers in Nutrition
Jahrgang11
PublikationsstatusVeröffentlicht - 12 Dez. 2024
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC11670747
Scopus 85213062209
ORCID /0000-0002-1887-4772/work/175220580

Schlagworte

Schlagwörter

  • decision trees, gastrointestinal diseases, GLIM criteria, liver cirrhosis, machine learning, malnutrition, supervised and unsupervised learning