Identification of fully measurable grand Lebesgue spaces

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We consider the Banach function spaces, called fully measurable grand Lebesgue spaces, associated with the function norm ρ(f)=esssupxXδ(x)ρp(x)(f), where ρp(x) denotes the norm of the Lebesgue space of exponent p(x), and p(·) and δ(·) are measurable functions over a measure space (X,), p(x)[1,∞], and δ(x)(0,1] almost everywhere. We prove that every such space can be expressed equivalently replacing p(·) and δ(·) with functions defined everywhere on the interval (0,1), decreasing and increasing, respectively (hence the full measurability assumption in the definition does not give an effective generalization with respect to the pointwise monotone assumption and the essential supremum can be replaced with the simple supremum). In particular, we show that, in the case of bounded p(·), the class of fully measurable Lebesgue spaces coincides with the class of generalized grand Lebesgue spaces introduced by Capone, Formica, and Giova.

Details

OriginalspracheEnglisch
Aufsatznummer3129186
Seitenumfang3
FachzeitschriftJournal of Function Spaces
Jahrgang2017
PublikationsstatusVeröffentlicht - 2017
Peer-Review-StatusJa

Externe IDs

Scopus 85032036047
ORCID /0000-0002-6854-0586/work/142232348

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Schlagwörter

  • Grand Lebesgue spaces

Bibliotheksschlagworte