Hysteresis and Its Correlation to Ionic Defects in Perovskite Solar Cells

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sandhya Tammireddy - , Technische Universität Chemnitz (Autor:in)
  • Muhammad N. Lintangpradipto - , King Abdullah University of Science and Technology (Autor:in)
  • Oscar Telschow - , Professur für Neuartige Elektroniktechnologien (gB/IFW und cfaed), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • Moritz H. Futscher - , Swiss Federal Laboratories for Materials Science and Technology (Empa) (Autor:in)
  • Bruno Ehrler - , AMOLF (Autor:in)
  • Osman M. Bakr - , King Abdullah University of Science and Technology (Autor:in)
  • Yana Vaynzof - , Professur für Neuartige Elektroniktechnologien (gB/IFW und cfaed), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • Carsten Deibel - , Technische Universität Chemnitz (Autor:in)

Abstract

Ion migration has been reported to be one of the main reasons for hysteresis in the current-voltage (J-V) characteristics of perovskite solar cells. We investigate the interplay between ionic conduction and hysteresis types by studying Cs0.05(FA0.83MA0.17)0.95Pb(I0.9Br0.1)3 triple-cation perovskite solar cells through a combination of impedance spectroscopy (IS) and sweep-rate-dependent J-V curves. By comparing polycrystalline devices to single-crystal MAPbI3 devices, we separate two defects, β and γ, both originating from long-range ionic conduction in the bulk. Defect β is associated with a dielectric relaxation, while the migration of γ is influenced by the perovskite/hole transport layer interface. These conduction types are the causes of different types of hysteresis in J-V curves. The accumulation of ionic defects at the transport layer is the dominant cause for observing tunnel-diode-like characteristics in the J-V curves. By comparing devices with interface modifications at the electron and hole transport layers, we discuss the species and polarity of involved defects.

Details

OriginalspracheEnglisch
Seiten (von - bis)1363-1372
Seitenumfang10
FachzeitschriftJournal of Physical Chemistry Letters
Jahrgang15 (2024)
Ausgabenummer5
PublikationsstatusVeröffentlicht - 29 Jan. 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38286839