Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Luu Hoang Duc - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Stefan Siegmund - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)

Abstract

The method of invariant manifolds was originally developed for hyperbolic rest points of autonomous equations. It was then extended from fixed points to arbitrary solutions and from autonomous equations to nonautonomous dynamical systems by either the LyapunovPerron approach or Hadamard's graph transformation. We go one step further and study meaningful notions of hyperbolicity and stable and unstable manifolds for equations which are defined or known only for a finite time, together with matching notions of attraction and repulsion. As a consequence, hyperbolicity and invariant manifolds will describe the dynamics on the finite time interval. We prove an analog of the Theorem of Linearized Asymptotic Stability on finite time intervals, generalize the OkuboWeiss criterion from fluid dynamics and prove a theorem on the location of periodic orbits. Several examples are treated, including a double gyre flow and symmetric vortex merger.

Details

OriginalspracheEnglisch
Seiten (von - bis)641-674
Seitenumfang34
FachzeitschriftInternational Journal of Bifurcation and Chaos
Jahrgang18
Ausgabenummer3
PublikationsstatusVeröffentlicht - März 2008
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0003-0967-6747/work/149795397

Schlagworte

Schlagwörter

  • Hyperbolicity, Invariant manifolds, Nonautonomous dynamical systems on finite time intervals, OkuboWeiss criterion