How Does Explainability Look in Hybrid User Interfaces?

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Abstract

The recent growth of Artificial Intelligence (AI) based systems considerably widespread their use in many application areas and our daily lives [28]. For instance, AI models are nowadays imbued into web search engines, self-autonomous vehicles, recommendation systems, games, and healthcare [24]. Accordingly, the demand for eXplainable AI (XAI) has risen [20] , [21] to help users cope with the growing complexity and opaqueness of the emerging generation of AI models [20] , [21]. By allowing users to perceive and make sense of the behaviors and outcomes of such models, XAI enables users of diverse levels of expertise to trust, manage, design, inspect, and develop AI models [13].

Details

OriginalspracheEnglisch
Seiten251-256
Seitenumfang6
PublikationsstatusVeröffentlicht - 16 Okt. 2023
Peer-Review-StatusJa

Konferenz

Titel22nd IEEE International Symposium on Mixed and Augmented Reality
KurztitelISMAR 2023
Veranstaltungsnummer22
Dauer16 - 20 Oktober 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtUniversity of New South Wales & Online
StadtSydney
LandAustralien

Externe IDs

ORCID /0000-0002-1952-8302/work/144669849
Scopus 85180364953
ORCID /0000-0003-1029-7656/work/166324031

Schlagworte

Schlagwörter

  • explainable artificial intelligence, hybrid user interfaces, mixed reality