How Computational Models Enable Mechanistic Insights into Virus Infection

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

Abstract

An implicit aim in cellular infection biology is to understand the mechanisms how viruses, microbes, eukaryotic parasites, and fungi usurp the functions of host cells and cause disease. Mechanistic insight is a deep understanding of the biophysical and biochemical processes that give rise to an observable phenomenon. It is typically subject to falsification, that is, it is accessible to experimentation and empirical data acquisition. This is different from logic and mathematics, which are not empirical, but built on systems of inherently consistent axioms. Here, we argue that modeling and computer simulation, combined with mechanistic insights, yields unprecedented deep understanding of phenomena in biology and especially in virus infections by providing a way of showing sufficiency of a hypothetical mechanism. This ideally complements the necessity statements accessible to empirical falsification by additional positive evidence. We discuss how computational implementations of mathematical models can assist and enhance the quantitative measurements of infection dynamics of enveloped and non-enveloped viruses and thereby help generating causal insights into virus infection biology.

Details

OriginalspracheEnglisch
TitelInfluenza Virus
Redakteure/-innenYohei Yamauchi
Herausgeber (Verlag)Humana Press
Seiten609-631
Seitenumfang23
ISBN (elektronisch)978-1-4939-8678-1
ISBN (Print)978-1-4939-9363-5
PublikationsstatusVeröffentlicht - 2018
Peer-Review-StatusJa

Publikationsreihe

ReiheMethods in Molecular Biology
Band1836
ISSN1064-3745

Externe IDs

PubMed 30151595
ORCID /0000-0003-4414-4340/work/142252151

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Adenovirus, Cell biology, Computing, Enveloped virus, In silico reconstitution, Influenza virus, Modeling, Non-enveloped virus, Parameter fitting virus infection mechanisms, Simulation