Hochschild lattices and shuffle lattices

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

In his study of a Hochschild complex arising in connection with the free loop fibration, S. Saneblidze defined the freehedron, a certain polytope constructed via a truncation process from the hypercube. It was recently conjectured by F. Chapoton and proven by C. Combe that a certain orientation of the 1-skeleton of the freehedron carries a lattice structure. The resulting lattice was dubbed the Hochschild lattice and it is interval constructable and extremal. These properties allow for the definition of three associated structures: the Galois graph, the canonical join complex and the core label order. In this article, we study and characterize these structures. We exhibit an isomorphism from the core label order of the Hochschild lattice to a particular shuffle lattice of C. Greene. We also uncover an enumerative connection between the core label order of the Hochschild lattice, a certain order extension of its poset of irreducibles and the freehedron. These connections nicely parallel the situation surrounding the better-known Tamari lattices, noncrossing partition lattices and associahedra.

Details

OriginalspracheEnglisch
Aufsatznummer103521
Seitenumfang31
FachzeitschriftEuropean Journal of Combinatorics
Jahrgang103
PublikationsstatusVeröffentlicht - Juni 2022
Peer-Review-StatusJa

Externe IDs

unpaywall 10.1016/j.ejc.2022.103521
WOS 000784071300006

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Complexes, Model

Bibliotheksschlagworte