HiHTP: A custom-tailored hierarchical sparse detector for massive MTC

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Gerhard Wunder - , Freie Universität (FU) Berlin (Autor:in)
  • Ingo Roth - , Freie Universität (FU) Berlin (Autor:in)
  • Rick Fritschek - , Freie Universität (FU) Berlin (Autor:in)
  • Jens Eisert - , Freie Universität (FU) Berlin (Autor:in)

Abstract

Recently, the Hierarchical Hard Thresholding Pursuit (HiHTP) algorithm was introduced to optimally exploit the hierarchical sparsity structure in joint user activity and channel detection problems, occurring e.g. in 5G massive Massive Machine-type Communications (mMTC) scenarios. In this paper, we take a closer look at the performance of HiHTP for user activity detection under noise and relate its performance to the classical block correlation detector with orthogonal signatures. More specifically, we derive a lower bound for the diversity order of HiHTP and provide explicit and easy to handle formulas for numerical evaluations and (5G) system designs. Furthermore, we surprisingly find that in specific parameter settings nonorthogonal pilots, i.e. pilots of which shifted versions actually interfere with each other, outperform the block correlation detector, which is optimal in the non-sparse situation. Finally, we evaluate our findings with numerical examples.

Details

OriginalspracheEnglisch
Titel2017 51st Asilomar Conference on Signals, Systems, and Computers
Herausgeber (Verlag)IEEE
Seiten1929-1934
Seitenumfang6
ISBN (Print)978-1-5386-1824-0
PublikationsstatusVeröffentlicht - 1 Nov. 2017
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel2017 51st Asilomar Conference on Signals, Systems, and Computers
Dauer29 Oktober - 1 November 2017
OrtPacific Grove, CA, USA

Externe IDs

Scopus 85050969117

Schlagworte

Schlagwörter

  • Detectors, Channel estimation, Task analysis, 5G mobile communication, Correlation, Matching pursuit algorithms, Inverse problems