High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ran He - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Taishan Zhu - , Massachusetts Institute of Technology (MIT) (Autor:in)
  • Pingjun Ying - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Jie Chen - , CAS - Institute of Physics (Autor:in)
  • Lars Giebeler - , Professur für Werkstoffsynthese und Analytik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Uta Kühn - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Jeffrey C. Grossman - , Massachusetts Institute of Technology (MIT) (Autor:in)
  • Yumei Wang - , CAS - Institute of Physics (Autor:in)
  • Kornelius Nielsch - , Institut für Angewandte Physik (IAP), Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden (Autor:in)

Abstract

Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (κL) is achieved by applying a pressure of ≈1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum κL reduction of ≈83% is realized for HfCoSb from 14 to 2.5 W m−1 K−1 at 300 K with more than 95% relative density. The realized low κL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials.

Details

OriginalspracheEnglisch
Aufsatznummer2102045
FachzeitschriftSmall
Jahrgang17
Ausgabenummer33
PublikationsstatusVeröffentlicht - 19 Aug. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 34235845

Schlagworte

Schlagwörter

  • half-Heusler compounds, high-pressure sintering, lattice thermal conductivity, thermoelectric devices