High-Precision Size Recognition and Separation in Synthetic 1D Nanochannels

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ping Wang - , National University of Singapore (Autor:in)
  • Xinyi Chen - , National University of Singapore, Nanjing Tech University (Autor:in)
  • Qiuhong Jiang - , National University of Singapore (Autor:in)
  • Matthew Addicoat - , Nottingham Trent University (Autor:in)
  • Ning Huang - , National University of Singapore (Autor:in)
  • Sasanka Dalapati - , National University of Singapore (Autor:in)
  • Thomas Heine - , Professur für Theoretische Chemie (Autor:in)
  • Fengwei Huo - , Nanjing Tech University (Autor:in)
  • Donglin Jiang - , National University of Singapore, Tianjin University (Autor:in)

Abstract

Covalent organic frameworks (COFs) allow elaborate manufacture of ordered one-dimensional channels in the crystal. We defined a superlattice of COFs by engineering channels with a persistent triangular shape and discrete pore size. We observed a size-recognition regime that is different from the characteristic adsorption of COFs, whereby pore windows and walls were cooperative so that triangular apertures sorted molecules of one-atom difference and notch nanogrooves confined them into single-file molecular chains. The recognition and confinement were accurately described by sensitive spectroscopy and femtosecond dynamic simulations. The resulting COFs enabled instantaneous separation of mixtures at ambient temperature and pressure. This study offers an approach to merge precise recognition, selective transport, and instant separation in synthetic 1D channels.

Details

OriginalspracheEnglisch
Seiten (von - bis)15922-15927
Seitenumfang6
FachzeitschriftAngewandte Chemie - International Edition
Jahrgang58
Ausgabenummer44
PublikationsstatusVeröffentlicht - 28 Okt. 2019
Peer-Review-StatusJa

Externe IDs

PubMed 31415116

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • covalent organic frameworks, molecular recognition, nanochannels, nanostructures, separation