Highly n-doped surfaces on n-type silicon wafers by laser-chemical Processes

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Dorit Linaschke - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Niels Schilling - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Ines Dani - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Udo Klotzbach - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Christoph Leyens - , Herzzentrum Dresden, Professur für Werkstofftechnik, Technische Universität Dresden (Autor:in)

Abstract

For a novel cell concept based on the combination of silicon heterojunction (SHJ) with metal wrap through (MWT) metallization [1] a highly doped area underneath the metallization grid is required. In the past years, alternative processes for realizing defined doping profiles in n- And p-type silicon solar cells were published [2, 3]. Laser doping offers the advantage of a locally confined heat impact causing diffusion of phosphor atoms into the molten silicon. Aim of this work is the development of a low cost laser-chemical doping process resulting in a shallow phosphor profile with high concentrations of electrically active phosphor on the surface. Application of the phosphor source and the diffusion of phosphor into the silicon is done in a one-step process with a single laser type. Sheet resistances of the laser doped areas are below 15 Ohm/square when using a pulsed wave (picosecond) laser source in the infrared region.

Details

OriginalspracheEnglisch
Seiten (von - bis)247-254
Seitenumfang8
FachzeitschriftEnergy Procedia
Jahrgang55
PublikationsstatusVeröffentlicht - 2014
Peer-Review-StatusJa

Konferenz

Titel4th International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2014
Dauer25 - 27 März 2014
StadtHertogenbosch
LandNiederlande

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • ECV, Highly n-doped surfaces, Laser doping, Metal wrap through, Silicon heterojunction, SIMS