High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ch Skokos - , Aristotle University of Thessaloniki, University of Cape Town (Autor:in)
  • E. Gerlach - , Professur für Astronomie, Lohrmann-Observatorium, Technische Universität Dresden (Autor:in)
  • J. D. Bodyfelt - , Massey University (Autor:in)
  • G. Papamikos - , University of Kent (Autor:in)
  • S. Eggl - , Institut de Mecanique Celeste et de Calcul des Ephemerides (Autor:in)

Abstract

While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS - a hotly debated subject in current scientific literature.

Details

OriginalspracheEnglisch
Seiten (von - bis)1809-1815
Seitenumfang7
FachzeitschriftPhysics Letters, Section A: General, Atomic and Solid State Physics
Jahrgang378
Ausgabenummer26-27
PublikationsstatusVeröffentlicht - 16 Mai 2014
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-9533-2168/work/168205392

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Disorder, Multidimensional Hamiltonian systems, Nonlinear Schrödinger equation, Symplectic integrators, Three part split