High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS - a hotly debated subject in current scientific literature.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1809-1815 |
Seitenumfang | 7 |
Fachzeitschrift | Physics Letters, Section A: General, Atomic and Solid State Physics |
Jahrgang | 378 |
Ausgabenummer | 26-27 |
Publikationsstatus | Veröffentlicht - 16 Mai 2014 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0002-9533-2168/work/168205392 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Disorder, Multidimensional Hamiltonian systems, Nonlinear Schrödinger equation, Symplectic integrators, Three part split