High Gain Embedding Observer Design: Combining Differential Geometry and Algebra with Machine Learning
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
High gain observers are often used for the real-time estimation of the state of nonlinear systems. Several design methods are based on normal forms, which are based on differential geometric considerations. The embedding into a higher dimensional state could be advantageous regarding existence conditions and convergence. However, computation and implementation of such embedding observers is usually significantly more challenging. In this paper, we circumvent some of these problems by employing machine learning. The required functions for the implementation of the observer are approximated by neural networks.
Details
Originalsprache | Englisch |
---|---|
Titel | 2023 27th International Conference on System Theory, Control and Computing (ICSTCC) |
Herausgeber (Verlag) | IEEE |
Seiten | 62-69 |
Seitenumfang | 8 |
ISBN (elektronisch) | 9798350337983 |
ISBN (Print) | 979-8-3503-3799-0 |
Publikationsstatus | Veröffentlicht - 13 Okt. 2023 |
Peer-Review-Status | Ja |
Konferenz
Titel | 2023 27th International Conference on System Theory, Control and Computing |
---|---|
Kurztitel | ICSTCC 2023 |
Veranstaltungsnummer | 27 |
Dauer | 11 - 13 Oktober 2023 |
Webseite | |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Ibis Timisoara City Center Hotel |
Stadt | Timisoara |
Land | Rumänien |
Externe IDs
Scopus | 85179509515 |
---|---|
ORCID | /0000-0002-3347-0864/work/156338278 |
Schlagworte
Schlagwörter
- Design methodology, Machine learning, Neural networks, Noise measurement, Observers, Real-time systems, Uncertain systems