High Gain Embedding Observer Design: Combining Differential Geometry and Algebra with Machine Learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

High gain observers are often used for the real-time estimation of the state of nonlinear systems. Several design methods are based on normal forms, which are based on differential geometric considerations. The embedding into a higher dimensional state could be advantageous regarding existence conditions and convergence. However, computation and implementation of such embedding observers is usually significantly more challenging. In this paper, we circumvent some of these problems by employing machine learning. The required functions for the implementation of the observer are approximated by neural networks.

Details

OriginalspracheEnglisch
Titel2023 27th International Conference on System Theory, Control and Computing (ICSTCC)
Herausgeber (Verlag)IEEE
Seiten62-69
Seitenumfang8
ISBN (elektronisch)9798350337983
ISBN (Print)979-8-3503-3799-0
PublikationsstatusVeröffentlicht - 13 Okt. 2023
Peer-Review-StatusJa

Konferenz

Titel2023 27th International Conference on System Theory, Control and Computing
KurztitelICSTCC 2023
Veranstaltungsnummer27
Dauer11 - 13 Oktober 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtIbis Timisoara City Center Hotel
StadtTimisoara
LandRumänien

Externe IDs

Scopus 85179509515
ORCID /0000-0002-3347-0864/work/156338278

Schlagworte

Schlagwörter

  • Design methodology, Machine learning, Neural networks, Noise measurement, Observers, Real-time systems, Uncertain systems