Hardware-Optimized RNN Detection for Insertion/Deletion Channels in Wireless Communication
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Eingeladen › Begutachtung
Beitragende
Abstract
Insertion and deletion errors pose a significant challenge in wireless communication, especially for energyconstrained Internet of Everything (IoE) devices operating in noisy 6 G environments. While traditional error-correcting codes can handle substitution errors, they fall short against synchronization distortions. In this work, we investigate a deep learning-based detection scheme for Insertion/Deletion channels, replacing sequential compute intensive classical approaches such as the Forward-Backward (FB) algorithm with a Recurrent Neural Network (RNN). The log-probabilities predicted by the neural network are forwarded to a Low-Density Parity-Check (LDPC) decoder to recover the transmitted message. To enable easy deployment of RNN on Field Programmable Gate Arrays (FPGAs), we implement a fully streaming, hardware-optimized RNN library in C++ using Vitis High-Level Systhesis (HLS). Our FPGA-based design provides flexible integration and competitive inference performance compared to related work.
| Titel in Übersetzung | Hardware-optimierte RNN-Erkennung für Einfügungs-/Löschungskanäle in der drahtlosen Kommunikation |
|---|
Details
| Originalsprache | Englisch |
|---|---|
| Titel | 2025 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) |
| Herausgeber (Verlag) | IEEE Canada |
| Seitenumfang | 6 |
| Band | 1 |
| ISBN (elektronisch) | 979-8-3315-3477-6 |
| ISBN (Print) | 979-8-3315-3478-3 |
| Publikationsstatus | Veröffentlicht - 9 Juli 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | IEEE Computer Society Annual Symposium on VLSI |
|---|---|
| ISSN | 2159-3477 |
Konferenz
| Titel | 2025 IEEE Computer Society Annual Symposium on VLSI |
|---|---|
| Kurztitel | ISVLSI 2025 |
| Veranstaltungsnummer | 28 |
| Dauer | 6 - 9 Juli 2025 |
| Webseite | |
| Ort | Elite City Resort |
| Stadt | Kalamata |
| Land | Griechenland |
Externe IDs
| ORCID | /0000-0003-2571-8441/work/191037268 |
|---|---|
| ORCID | /0000-0002-8604-0139/work/191039921 |
| Scopus | 105016129799 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Deep Unfolding, FPGA, Marker Code