Hardware-Optimized RNN Detection for Insertion/Deletion Channels in Wireless Communication

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandEingeladenBegutachtung

Abstract

Insertion and deletion errors pose a significant challenge in wireless communication, especially for energyconstrained Internet of Everything (IoE) devices operating in noisy 6 G environments. While traditional error-correcting codes can handle substitution errors, they fall short against synchronization distortions. In this work, we investigate a deep learning-based detection scheme for Insertion/Deletion channels, replacing sequential compute intensive classical approaches such as the Forward-Backward (FB) algorithm with a Recurrent Neural Network (RNN). The log-probabilities predicted by the neural network are forwarded to a Low-Density Parity-Check (LDPC) decoder to recover the transmitted message. To enable easy deployment of RNN on Field Programmable Gate Arrays (FPGAs), we implement a fully streaming, hardware-optimized RNN library in C++ using Vitis High-Level Systhesis (HLS). Our FPGA-based design provides flexible integration and competitive inference performance compared to related work.
Titel in Übersetzung
Hardware-optimierte RNN-Erkennung für Einfügungs-/Löschungskanäle in der drahtlosen Kommunikation

Details

OriginalspracheEnglisch
Titel2025 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
Herausgeber (Verlag)IEEE Canada
Seitenumfang6
Band1
ISBN (elektronisch)979-8-3315-3477-6
ISBN (Print)979-8-3315-3478-3
PublikationsstatusVeröffentlicht - 9 Juli 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Computer Society Annual Symposium on VLSI
ISSN2159-3477

Konferenz

Titel2025 IEEE Computer Society Annual Symposium on VLSI
KurztitelISVLSI 2025
Veranstaltungsnummer28
Dauer6 - 9 Juli 2025
Webseite
OrtElite City Resort
StadtKalamata
LandGriechenland

Externe IDs

ORCID /0000-0003-2571-8441/work/191037268
ORCID /0000-0002-8604-0139/work/191039921
Scopus 105016129799

Schlagworte

Schlagwörter

  • Deep Unfolding, FPGA, Marker Code