Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marco Albani - , Università degli Studi di Milano Bicocca (Autor:in)
  • Lea Ghisalberti - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Roberto Bergamaschini - , Università degli Studi di Milano Bicocca (Autor:in)
  • Martin Friedl - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Marco Salvalaglio - , Professur für Wissenschaftliches Rechnen und Angewandte Mathematik (Autor:in)
  • Axel Voigt - , Professur für Wissenschaftliches Rechnen und Angewandte Mathematik (Autor:in)
  • Francesco Montalenti - , Università degli Studi di Milano Bicocca (Autor:in)
  • Gozde Tutuncuoglu - , Georgia Institute of Technology (Autor:in)
  • Anna Fontcuberta i Morral - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Leo Miglio - , Università degli Studi di Milano Bicocca (Autor:in)

Abstract

Nanoscale membranes have emerged as a new class of vertical nanostructures that enable the integration of horizontal networks of III-V nanowires on a chip. To generalize this method to the whole family of III-Vs, progress in the understanding of the membrane formation by selective area epitaxy in oxide slits is needed, in particular for different slit orientations. Here, it is demonstrated that the shape is primarily driven by the growth kinetics rather than determined by surface energy minimization as commonly occurs for faceted nanostructures. To this end, a phase-field model simulating the shape evolution during growth is devised, in agreement with the experimental findings for any slit orientations, even when the vertical membranes turn into multifaceted fins. This makes it possible to reverseengineer the facet-dependent incorporation times, which were so far unknown, even for common low-index facets. The compelling reproduction of the experimental morphologies demonstrates the reliability of the growth model and offers a general method to determine microscopic kinetic parameters governing out-of-equilibrium three-dimensional growth.

Details

OriginalspracheEnglisch
Aufsatznummer093404
Seitenumfang10
FachzeitschriftPhysical review materials
Jahrgang2
Ausgabenummer9
PublikationsstatusVeröffentlicht - 17 Sept. 2018
Peer-Review-StatusJa

Externe IDs

Scopus 85059614245
ORCID /0000-0002-4217-0951/work/142237412

Schlagworte

Schlagwörter

  • THIN CRYSTALLINE FILMS, VAPOR-PHASE EPITAXY, SURFACE EVOLUTION, FIELD MODEL, EQUILIBRIUM, NANOWIRES, SHAPES, DIFFUSION