GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Pretrained Language Models (PLMs) benefit from external knowledge stored in graph structures for various downstream tasks. However, bridging the modality gap between graph structures and text remains a significant challenge. Traditional methods like linearizing graphs for PLMs lose vital graph connectivity, whereas Graph Neural Networks (GNNs) require cumbersome processes for integration into PLMs. In this work, we propose a novel graph-guided self-attention mechanism, GraSAME. GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts. As an end-to-end, lightweight multimodal module, GraSAME follows a multi-task learning strategy and effectively bridges the gap between graph and textual modalities, facilitating dynamic interactions between GNNs and PLMs. Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets. Furthermore, compared to SOTA models, GraSAME eliminates the need for extra pre-training tasks to adjust graph inputs and reduces the number of trainable parameters by over 100 million.

Details

OriginalspracheEnglisch
TitelFindings of the Association for Computational Linguistics
Redakteure/-innenKevin Duh, Helena Gomez, Steven Bethard
ErscheinungsortMexico City, Mexico
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten920–933
Seitenumfang14
ISBN (elektronisch)979-889176119-3
PublikationsstatusVeröffentlicht - Juni 2024
Peer-Review-StatusJa

Konferenz

Titel2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics
KurztitelNAACL 2024
Dauer16 - 21 Juni 2024
Webseite
OrtHilton Reforma Mexico City
StadtMexico City
LandMexiko

Externe IDs

Scopus 85197895877

Schlagworte

Forschungsprofillinien der TU Dresden