GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Pretrained Language Models (PLMs) benefit from external knowledge stored in graph structures for various downstream tasks. However, bridging the modality gap between graph structures and text remains a significant challenge. Traditional methods like linearizing graphs for PLMs lose vital graph connectivity, whereas Graph Neural Networks (GNNs) require cumbersome processes for integration into PLMs. In this work, we propose a novel graph-guided self-attention mechanism, GraSAME. GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts. As an end-to-end, lightweight multimodal module, GraSAME follows a multi-task learning strategy and effectively bridges the gap between graph and textual modalities, facilitating dynamic interactions between GNNs and PLMs. Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets. Furthermore, compared to SOTA models, GraSAME eliminates the need for extra pre-training tasks to adjust graph inputs and reduces the number of trainable parameters by over 100 million.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Findings of the Association for Computational Linguistics |
| Redakteure/-innen | Kevin Duh, Helena Gomez, Steven Bethard |
| Erscheinungsort | Mexico City, Mexico |
| Herausgeber (Verlag) | Association for Computational Linguistics (ACL) |
| Seiten | 920–933 |
| Seitenumfang | 14 |
| ISBN (elektronisch) | 979-889176119-3 |
| Publikationsstatus | Veröffentlicht - Juni 2024 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics |
|---|---|
| Kurztitel | NAACL 2024 |
| Dauer | 16 - 21 Juni 2024 |
| Webseite | |
| Ort | Hilton Reforma Mexico City |
| Stadt | Mexico City |
| Land | Mexiko |
Externe IDs
| Scopus | 85197895877 |
|---|---|
| ORCID | /0000-0001-5458-8645/work/193180538 |