Graphene nanoribbons are internalized by human primary immune cell subpopulations maintaining a safety profile: A high-dimensional pilot study by single-cell mass cytometry

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung


  • Claudia Fuoco - , University of Rome Tor Vergata (Autor:in)
  • Xiangfeng Luan - , Shanghai Jiao Tong University, Université de Strasbourg (Autor:in)
  • Laura Fusco - , Università degli studi di Padova (Autor:in)
  • Federica Riccio - , University of Rome Tor Vergata (Autor:in)
  • Giulio Giuliani - , University of Rome Tor Vergata (Autor:in)
  • Hazel Lin - , Université de Strasbourg (Autor:in)
  • Marco Orecchioni - , La Jolla Institute for Allergy and Immunology (Autor:in)
  • Cristina Martín - , Université de Strasbourg (Autor:in)
  • Gianni Cesareni - , University of Rome Tor Vergata (Autor:in)
  • Xinliang Feng - , Professur für Molekulare Funktionsmaterialien (Fakultät Chemie und Lebensmittelchemie), Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Yiyong Mai - , Shanghai Jiao Tong University (Autor:in)
  • Alberto Bianco - , Université de Strasbourg (Autor:in)
  • Lucia Gemma Delogu - , Università degli studi di Padova (Autor:in)


Graphene nanoribbons (GNRs) are emerging graphene materials showing clear promising applications in the biomedical field. The evaluation of GNR biocompatibility at the immune level is a critical aspect of their clinical translation. Here, we report the ex vivo immune profiling and tracking of GNRs at the single-cell level on eight human blood immune cell subpopulations. We selected ultra-small (GNRs-I-US) and small GNRs (GNRs-I-S), with an average length of 7.5 and 60 nm, respectively. GNRs were functionalized with 115In to trace their cell interactions by single-cell mass cytometry. Both materials are highly biocompatible and internalized by immune cells without inducing significant functional changes. GNRs-I-US interacted to a greater extent with myeloid dendritic cells (mDCs) and classical monocytes, while GNRs-I-S mainly interacted with mDCs. These results demonstrate that structurally precise GNRs are efficiently internalized by immune cells. In addition, our chemical and methodological single-cell approach can be applied to other cell types using various carbon-based nanomaterials, bringing new insights into their safety and future biomedical applications.


FachzeitschriftApplied materials today
PublikationsstatusVeröffentlicht - Dez. 2022


Forschungsprofillinien der TU Dresden

ASJC Scopus Sachgebiete


  • Biocompatibility, CyTOF, Immune system, Nanomedicine, Two-dimensional materials